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COMPLEMENTARY NOTES TO THE BOOK “LECTURES ON

ALGEBRAIC QUANTUM GROUPS”*

MAURICIO MEDINA-BÁRCENAS

Abstract.

1. Hopf Algebras

Let us fix a fiel k.
Given two vector spaces (over k) A anb B, we will denote by A⊗ B the tensor

product over k.

Definition 1.1. Let A and B be vector spaces. The twist map

τ : A⊗B //B ⊗A

is the k-morphism sending τ(a⊗ b) = b⊗ a.

Definition 1.2. An algebra over k or a k-algebra is a vector space A equipped
with k-morphisms µ : A⊗A //A and u : k //A called the multiplication and the
unit respectively, such that the following diagrams commute:

k ⊗A u⊗IA //

∼=
$$

A⊗A

µ

��

A⊗ kIA⊗uoo

∼=
zz

A⊗A⊗A
µ⊗IA //

IA⊗µ
��

A⊗A

µ

��
A A⊗A

µ
// A

A is commutative if the following diagram commutes:

A⊗A τ //

µ
""

A⊗A

µ
||

A

Example 1.3. (i) k is a commutative k-algebra with multiplication µ(a⊗b) =
ab and unit u(1) = 1.

(ii) k[x] the polynomial ring with coefficients in k.
(iii) Mn(k) the n by n matrices with coefficients in k.
(iv) Tensor product of two algebras. Let (A,µ, u) and (A′, µ′, u) be two k-

algebras. Then A⊗A′ is a k-algebera with the following multiplication and
unit:

µ⊗ : (A⊗A′)⊗ (A⊗A′)
IA⊗τ⊗IA′ // (A⊗A)⊗ (A′ ⊗A′)

µ⊗µ′ // A⊗A′

u⊗(1) = u(1)⊗ u′(1)

*Written by K. Brown and K. Goodearl [1].
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2 MAURICIO MEDINA-BÁRCENAS

Now, we can dualize the diagrams in the definition of k-algebraa and we get a
k-coalgebra:

Definition 1.4. A coalgebra over k or a k-coalgebra is a vector space C together
k-morphisms ∆ : C // C ⊗ C and ε : C // k called the comultiplication and the
counit respectively, such that the following diagrams commute:

C
∆ //

∆

��

C ⊗ C

IC⊗∆

��

C

∆

��

1⊗

zz

⊗1

$$
C ⊗ C

∆⊗IC
// C ⊗ C ⊗ C k ⊗ C C ⊗ C

ε⊗IC
oo

IC⊗ε
// C ⊗ k

C is cocommutative if the following diagram commutes:

C

∆

{{

∆

##
C ⊗ C

τ
// C ⊗ C

Sweedler’s Notation
For an element c ∈ C, we will write ∆(c) =

∑
c1 ⊗ c2 ∈ C ⊗ C where c1 and c2

refer to variables elements of C, not uniquely, determinated. The subscripts 1 and
2 indicate the position of these elements in the tensor product. With this notation
the coassociativity of ∆ is expressed by:

(IC ⊗∆)∆(c) = (IC ⊗∆)(
∑

c1 ⊗ c2)

=
∑

c1 ⊗∆(c2)

=
∑

c1 ⊗ (c21 ⊗ c22)

=
∑

(c11 ⊗ c12)⊗ c2

=
∑

∆(c1)⊗ c2

(∆⊗ IC)∆(c) = (∆⊗ IC)(
∑

c1 ⊗ c2)

(1.1)

For the counit:

(ε⊗ IC)∆(c) = (ε⊗ IC)(
∑

c1 ⊗ c2)

=
∑

ε(c1)⊗ c2

= 1⊗
∑

ε(c1)c2

= 1⊗ c
This implies that,

(1.2) c =
∑

ε(c1)c2

Analogously,

(1.3) c =
∑

c1ε(c2)

The cocommutativity is equivalent to

(1.4)
∑

c1 ⊗ c2 =
∑

c2 ⊗ c1
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Example 1.5. (i) k is a coalgebra with comultiplication ∆(a) = 1 ⊗ a and
counit ε = Ik.

(ii) Let F be a vector space with basis {fλ}λ∈Λ. Then there exist an unique
k-morphism ∆ : F // F ⊗ F such that ∆(fλ) = fλ ⊗ fλ for all λ ∈ Λ; and
a unique k-morphism ε : F // k such that ε(fλ) = 1 for all λ ∈ Λ.

Coassociativity

(IF ⊗∆)∆(fλ) = (IF ⊗∆)(fλ ⊗ fλ) = fλ ⊗∆(fλ) = fλ ⊗ fλ ⊗ fλ

(∆⊗ IF )∆(fλ) = (∆⊗ IF )(fλ ⊗ fλ) = ∆(fλ)⊗ fλ = fλ ⊗ fλ ⊗ fλ

Counit For the counit we have

fλ = 1fλ = ε(fλ)fλ

(iii) Let G be a group. Consider the group ring k[G]. Then, we can give two
coalgebra’s structures to k[G] as follows: The first structure is given by last
example. That is, ∆(g) = g ⊗ g and ε(g) = 1. For the other structure, let
e ∈ G the unit of G. We define

∆ : k[G] // k[G]⊗ k[G]

as follows:

∆(g) =

{
e⊗ e if g = e

g ⊗ e+ e⊗ g if g 6= e

and counit,

ε : k[G] // k

as:

ε(g) =

{
1 if g = e

0 if g 6= e

(iv) Consider the polynomial ring k[x]. We can give two coalgebra structures
to k[x]. The first is given by the example (ii), with the canonical basis
{1, x, x2, x3, . . . }. The second structure is as follows:

Comultiplication:

∆ : k[x] // k[x]⊗ k[x]

defined as

∆(xi) = (x⊗ 1 + 1⊗ x)i

Counit:

ε : k[x] // k

defined as

ε(xi) =

{
1 if i = 0

0 if i ≥ 1
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Let us check the coassociativity,

(1⊗∆)∆(xi) = (1⊗∆)(x⊗ 1 + 1⊗ x)i

= (1⊗∆)

i∑
j=0

kj(x
j ⊗ xi−j)

=

i∑
j=0

ki(x
j ⊗∆(xi−j))

=

i∑
j=0

ki(x
j ⊗

i−j∑
`=0

a`(x
` ⊗ xi−j−`))

=

i∑
j=0

i−j∑
`=0

kia`(x
j ⊗ x` ⊗ xi−j−`)

For some elements kj , a` ∈ k. On the other hand,

(∆⊗ 1)∆(xi) = (∆⊗ 1)(x⊗ 1 + 1⊗ x)i

= (∆⊗ 1)

i∑
j=0

kj(x
j ⊗ xi−j)

=

i∑
j=0

ki(∆(xj)⊗ xi−j)

=

i∑
j=0

ki(

j∑
`=0

a`(x
` ⊗ xj−`)⊗ xi−j)

=

i∑
j=0

j∑
`=0

kia`(x
` ⊗ xj−` ⊗ xi−j)

It follows that (∆⊗ 1)∆(xi) = (1⊗∆)∆(xi). Now,

(ε⊗ 1)∆(xi) = (ε⊗ 1)

i∑
j=0

kj(x
j ⊗ xi−j)

=

i∑
j=0

kj(ε(x
j)⊗ xi−j)

= 1⊗ xi

Analogously, (1⊗ ε)∆(xi) = xi ⊗ 1. Thus (k[x],∆, ε) is a coalgebra.
(v) Consider the matrix ring Matn(k) with canonical basis {eij}. Define

∆ : Matn(k) // Matn(k)⊗Matn(k)

as follows

∆(eij) =
∑
`

ei` ⊗ e`j

And

ε : Matn(k) // k
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as

ε(eij) = δij

We will call this coalgebra the n × n matrix coalgebra over k and we will
denote it by Matcn(k). We can identify this coalgebra with the ring of
polynomial functions on the space of n× n matrices over k

O(Matn(k)) = k[Xij | 1 ≤ i, j ≤ n]

sending eij 7−→ Xij .
(vi) The tensor product of two coalgebras. Let (C,∆, ε) and (C ′,∆′, ε′) be two

coalgebras. Then the tensor product C ⊗ C ′ is a coalgebra with comulti-
plication and unit:

∆⊗ : C ⊗ C ′ ∆⊗∆ // C ⊗ C ⊗ C ′ ⊗ C ′
IC⊗τ⊗IC′ // C ⊗ C ′ ⊗ C ⊗ C ′

ε⊗ : C ⊗ C ′ ε⊗ε // k

Convolution Product

Example 1.6. Consider any coalgebra (C,∆, ε). Let C∗ denote the dual of C
as vector space, that is C∗ = Homk(C, k). Then C∗ is a k-algebra with product
given by the transpose of ∆, that is, for f, g ∈ C∗, (f ∗ g)(c) =

∑
f(c1)g(c2) where

∆(c) =
∑
c1 ⊗ c2.

Proposition 1.7. Let (A,µ, u) be an k-algebra and let (C,∆, ε) be a k-coalgebra.
Then Homk(C,A) is a k-algebra with multiplication and unit as follows: Let f, g ∈
Homk(C,A)

∗ : Homk(C,A)⊗Homk(C,A) // Homk(C,A)

f ∗ g = µ(f ⊗ g)∆

The unit is given by the composition uε.
In the Sweedler’s notation

(f ∗ g) (c) =
∑

f(c1)g(c2)

uε(c) = ε(c)1A

This product is called the convolution product.

Proof. Associativity.

f ∗ (g ∗ h) = µ(f ⊗ (g ∗ h))∆

= µ(f ⊗ µ(g ⊗ h)∆)∆

= µ ((IA ⊗ µ)(f ⊗ (g ⊗ h))(IC ⊗∆)) ∆

= µ((µ⊗ IA)((f ⊗ g)⊗ h)(∆⊗ IC))∆

= µ((µ(f ⊗ g)⊗ h)(∆⊗ IC))∆

= µ(µ(f ⊗ g)∆⊗ h)∆

= (f ∗ g) ∗ h
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Now, let us check that uε is the unit.

(f ∗ uε)(c) =
∑

f(c1)uε(c2)

=
∑

f(c1)ε(c2)1A

=
∑

f(c1ε(c2))

= f(
∑

c1ε(c2))

= f(c)

Last equality follows from (1.2). Analogously, uε ∗ f = f . �

The dual of Proposition 1.7 fails since V is an infinite dimensional vector space,
V ∗ ⊗ V ∗ is a proper subespace of (V ⊗ V )∗, so that the dual of the multiplication
map on an infinite dimensional algebra A need not take all values in A∗ ⊗A∗.

Definition 1.8. Let A be a k-algebra. The finite dual of Hopf dual of A is the set

A◦ = {f ∈ A∗ | f(I) = 0 for some ideal I of A with dimk(A/I) <∞}

Proposition 1.9. Let (A,µ, u) be a k-algebra. Then A◦ is a coalgebra with comul-
tiplication ∆ = µ∗ and counit ε = u∗.

Definition 1.10. Let (A,µ, u) and (A′, µ′, u′) be two algebras. A k-morphism
f : A //A′ is an algebra morphism if the following diagrams commute:

A⊗A′ A′
µ
//

A⊗A′

A⊗A′

f⊗f

��

A⊗A′ A
µ // A

A′

f

��

k

A′

u′

��

k A
u // A

A′

f

��

Definition 1.11. Let (C,∆, ε) and (C ′,∆′, ε′) be two coalgebras. A k-morphism
f : C // C ′ is a coalgebra morphism if the following diagrams commute:

C ⊗ C C ′ ⊗ C ′
f⊗f

//

C

C ⊗ C

∆

��

C C ′
f // C ′

C ′ ⊗ C ′

∆′

��

C

k

ε

��

C C ′
f // C ′

k

ε′

��

Definition 1.12. Let (C,∆, ε) be a coalgebra. A subspace I of C is a coideal if
∆(I) ⊆ C ⊗ I + I ⊗ C and ε(I) = 0.

Proposition 1.13. Let I be a coideal of a coalgebra (C,∆, ε). Then

(a) C/I is a coalgebra.
(b) The canonical projection π : C // C/I is a coalgebra morphism.

Proof. (a) Consider π⊗π : C⊗C //C/I⊗C/I. Then Ker(π⊗π) = C⊗I+I⊗C.
This implies that

C ⊗ C
C ⊗ I + I ⊗ C

∼=
C

I
⊗ C

I
�
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Hence the comultiplication ∆C/I on C/I is induced by the following diagram:

0 // I //

∆|
��

C
π //

∆

��

C/I //

∃∆C/I

��

0

0 // C ⊗ I + I ⊗ C // C ⊗ C π⊗π // C/I ⊗ C/I // 0

The counit is the map induced by ε,

C

C/I

π

��

C k
ε // k

C/I

??

εC/I

For the coassociativity, we have to see that front face of the next cube commutes:

C

π
xx

∆ //C ⊗ C

IC⊗∆

��

π⊗πuu
C/I

∆C/I

//

∆C/I

��

∆

��

C/I ⊗ C/I

IC/I⊗∆C/I

C ⊗ C
π⊗π

xx

∆⊗IC
//

��

C ⊗ C ⊗ C
π⊗π⊗π

uu
C/I ⊗ C/I

∆C/I⊗IC/I

//C/I ⊗ C/I ⊗ C/I

The back face is the coassociativity of ∆. Notice that by the definition of ∆C/I

the top, bottom, right and left faces commute. Hence

(IC/I ⊗∆C/I)∆C/Iπ = (IC/I ⊗∆C/I)(π ⊗ π)∆

= (π ⊗ π ⊗ π)(IC ⊗∆)

= (∆C/I ⊗ I)(π ⊗ π)∆

= (∆C/I ⊗ IC/I)∆C/Iπ

Since π is surjective, (IC/I ⊗∆C/I)∆C/I = (∆C/I ⊗ IC/I)∆C/I .
It is left to the reader to see that εC/I is a counit.
(b) It is clear for the construction of ∆C/I .

Definition 1.14. A k-Bialgebra is a k-vector space B equipped with linear maps
µ, u,∆, ε such that (B,µ, u) is a k-algebra, (B,∆, ε) is a k-coalgebra and either:

• ∆ and ε are algebra morphisms, or
• µ and u are coalgebra morphisms.
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In fact, these two last conditions are equivalent. For, suppose ∆ and ε are algebra
morphisms. Consider the following diagram,

B ⊗B
µ //

∆⊗∆

��

B

∆

��

(B ⊗B)⊗ (B ⊗B)

IB⊗τ⊗IB
��

B ⊗B ⊗B ⊗B
µ⊗µ

// B ⊗B

If we recall the tensor algebra (Example 1.3(iv)) and the tensor coalgebra (Ex-
ample 1.5(vi)) then we can see that if ∆ is an algebra morphism then the diagram
commutes. And, if ε is an algebra morphism then the following diagram commutes

k ⊗ k k∼=
//

B ⊗B

k ⊗ k

ε⊗ε

��

B ⊗B B
µ // B

k

ε

��

Thus µ is a coalgebra morphism. To see that u is a coalgebra morphism, since
ε is an algebra morphism then εu = Ik and since ∆ is an algebra morphism this
diagram

k

B ⊗B

u⊗

��

k B
u // B

B ⊗B

∆

��

commutes. So u is a coalgebra morphism. The other implication follows with the
same diagrams.

Example 1.15. (i) Consider the coalgebra k[G] with comultiplication ∆(g) =
g⊗ g and counit ε(g) = 1 (Example 1.5(iii)). Then k[G] is a bialgebra. Let
see that ∆ is an algebra morphism.

µ⊗(∆⊗∆)(g ⊗ h) = (µ⊗ µ)(I ⊗ τ ⊗ I)(∆⊗∆)(g ⊗ h)

= (µ⊗ µ)(I ⊗ τ ⊗ I)(g ⊗ g ⊗ h⊗ h)

= µ⊗ µ(g ⊗ h⊗ g ⊗ h)

= gh⊗ gh
= ∆(gh)

= ∆µ(g ⊗ h)

And

∆u(1) = ∆(1)

= 1⊗ 1

= u⊗(1)

Thus, ∆ is an algebra morphism. It is clear that ε is an algebra morphism.
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(ii) Consider the coalgebra O(Matn(k)) presented in Example 1.5(v) and con-
sider the isomorphism

O(Matn(k))⊗O(Matn(k))
ϕ

∼=
// O(Matn(k)×Matn(k))

where ϕ(f⊗g)(a, b) = f(a)g(b). Let m : Matn(k)×Matn(k) //Matn(k) de-
note the multiplication of matrices. Then the comultiplication inO(Matn(k))
is given by ∆(f) = ϕ−1(fm). Given f, g ∈ O(Matn(k)) denote the product
of polynomials as f · g. Then

∆(f · g) = ϕ−1((f · g)m) = ϕ−1(fm · gm) = ϕ−1(fm)ϕ(gm) = ∆(fm)∆(gm).

It is clear that ∆(1) = 1⊗1. Hence ∆ is an algebra morphism. On the other
hand, the counit of this coalgebra is ε(f) = f(In) where In is de identity
matrix, so itis clear that ε is an algebra morphism. Thus O(Matn(k)) is a
bialgebra.

(iii) The quantum plane

Oq(k2) = k〈x, y | xy = qyx〉

We have that Oq(k2) ∼= k[x][y; τ ] (an skew polynomial ring) where τ :
k[x] // k[x] is the automorphism given by τ(f(x)) = f(q−1x) and so
{xiyj | i, j ≥ 0} is a basis for this algebra. Oq(k2) is a bialgebra with
comultiplication given by

∆(x) = x⊗ x

∆(y) = y ⊗ 1 + 1⊗ y

and counit

ε(x) = 1

ε(y) = 0

Since Oq(k2) is a free algebra, ∆ and ε define algebra morphisms. What
we have to check is that (Oq(k2),∆, ε) is a coalgebra. By construction
∆(xiyj) = µ⊗(∆(x)i ⊗∆(y)j) where µ⊗ is the multiplicationin the tensor
algebra. For the coassociativity,

(∆⊗ 1)∆(xiyj) = (∆⊗ 1)µ⊗(∆(x)i ⊗∆(y)j) = µ⊗((∆⊗ 1)∆(xi)⊗ (∆⊗ 1)∆(yj)).

By Example 1.5(iv), this is equal to

µ⊗((1⊗∆)∆(xi)⊗ (1⊗∆)∆(yj)) = (1⊗∆)µ⊗(∆(x)i ⊗∆(y)j) = (1⊗∆)∆(xiyj).

Hence ∆ is coassociative. Now, also using Example 1.5(iv),

(ε⊗ 1)∆(xiyj) = (ε⊗ 1)µ⊗(∆(xi)⊗∆(yj)) = µ⊗((ε⊗ 1)∆(xi)⊗ (ε⊗ 1)∆(yj))

= µ⊗((1⊗ xi)⊗ (1⊗ yj)) = 1⊗ xiyj .

Thus (Oq(k2),∆, ε) is a coalgebra and so Oq(k2) is a bialgebra.

Definition 1.16. Let B be a bialgebra. A subspace I of B is a biideal if I is both,
an ideal and a coideal.
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Example 1.17. Consider the bialgebra O(Matn(k)) (Example 1.15(ii)). Let D ∈
O(Matn(k)) be the determinant function. Then ε(D) = 1 and ∆(D) = D⊗D. For,
consider the isomorphism

O(Matn(k))⊗O(Matn(k))
ϕ

∼=
// O(Matn(k)×Matn(k)) .

Since D commutes with products, ∆(D) = ϕ−1(Dm) and D ⊗ D have the same
image under the isomorphism ϕ. Therefore, ∆(D) = D ⊗ D. Let 〈D − 1〉 be the
ideal generated by D − 1. We have that

∆(D − 1) = (D − 1)⊗ (D − 1) ⊆ 〈D − 1〉 ⊗ O(Matn(k)) +O(Matn(k))⊗ 〈D − 1〉 .
And ε(D − 1) = D(In)− 1 = 1− 1 = 0. Thus 〈D − 1〉 is a biideal of O(Matn(k)).

Definition 1.18. Let B and B′ be two bialgebras. A k-morphism f : B // B′

is a morphism of bialgebras if f is both, an algebra morphism and a coalgebra
morphism.

Proposition 1.19. Let (B,µ, u,∆, ε) be a bialgebra. Then ε induces a left (right)
B-module structure on k. This module will be denoted by εk (kε).

Proof. Let b ∈ B and α ∈ k. Define α.b = ε(b)α. Since ε is an algebra morphism,
k is B-module. �

The comultiplication in a bialgebra (B,µ, u,∆, ε) allows tensor products of B-
modules to be made into B-modules. Suppose V and W are left B-modules and
view the module multiplication as algebra homomorphism mV : B // Endk(V )
and mW : B // Endk(W ). Then there is an algebra homomorphism

B
∆ // B ⊗B mV ⊗mW // Endk(V )⊗ Endk(W )

� � // Endk(V ⊗W ),

which turns V ⊗W into a left B-module. The formula for the module multiplication
is b(v ⊗ w) =

∑
b1v ⊗ b2w where ∆(b) =

∑
b1 ⊗ b2.

Definition 1.20. A bialgebra (H,µ, u,∆, ε) is a Hopf algebra if there exists a linear
map S : H //H such that

S ∗ IH = uε = IH ∗ S,
that is, S is the inverse of the identity IH in the convolution product. S is called
the antipode of H.

By the definition we can see that

(1.5) (S ∗ IH)(h) =
∑

S(h1)h2 = ε(h)1H

and

(1.6) (IH ∗ S)(h) =
∑

h1S(h2) = ε(h)1H

Definition 1.21. Let H and G be two Hopf algebras. A k-morphism f : H //G
is a morphism of Hopf algebras if f is both, an algebra and a coalgebra morphism
such that fSH = SGf .

Definition 1.22. An ideal I of H is a Hopf ideal if I is a coideal and S(I) ⊆ I.

Let I be a Hopf ideal of a Hopf algebra H. Since I is a coideal then H/I is a
bialgebra. Moreover, since S(I) ⊆ I, pass to S/I. Hence S/I is a Hopf algebra.
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Remark 1.23. If f : H //G is a morphism of Hopf algebras then Ker f is a Hopf
ideal. For, since f is a coalgebra morphism Ker f is a coideal. Now, f(SH)(Ker f) =
SG(f(Ker f)) = 0. Thus, SH(Ker f) ⊆ Ker f . Taking the canonical projection,
every Hopf ideal is a kernel.

Example 1.24. (i) Let H = k[x, x−1]. We know that H is an algebra. By
Example 1.5.(ii) H is a coalgebra with comultiplication ∆(xi) = xi ⊗ xi
and counit ε(xi) = 1 for all i ∈ Z. Let us see that µ and u are morphism of
coalgebras. That is, we have to see that the following diagrams commute

H ⊗H ⊗H ⊗H H ⊗H
µ⊗µ

//

H ⊗H

H ⊗H ⊗H ⊗H

∆⊗

��

H ⊗H H
µ // H

H ⊗H

∆

��

H ⊗H

k

ε⊗

��

H ⊗H H
µ // H

k

ε

��

and

k ⊗ k H ⊗H
u⊗u

//

k

k ⊗ k

∼=

��

k H
u // H

H ⊗H

∆

��

k

k

Ik

��

k H
u // H

k

ε

��

So,

(µ⊗ µ)∆⊗(xi ⊗ xj) = (µ⊗ µ)(xi ⊗ xj ⊗ xi ⊗ xj)
= xixj ⊗ xixj

= ∆(xixj)

= ∆µ(xi ⊗ xj)

and

εµ(x⊗xj) = ε(xixj)

= 1

= ε⊗(xi ⊗ xj)

Thus, µ is an coalgebra morphism.



12 MAURICIO MEDINA-BÁRCENAS

Now, for u,

∆u(1) = ∆(1H)

= 1H ⊗ 1H

= (u⊗ u)(1)

and

εu(1) = ε(1H)

= 1

Thus, u is a coalgebra morphism. Hence, H is a bialgebra. Define S :
H //H as S(xi) = x−1. Then

(S ∗ IH)(xi) = S(xi)xi = x−1xi = 1H = uε(xi)

(IH ∗ S)(xi) = xiS(xi) = xix−1 = 1H = uε(xi)

Thus H is a Hopf algebra.
(ii) The bialgebra k[G] with comultiplication ∆(g) = g⊗g and counit ε(g) = 1,

is a Hopf algebra with antipode S : k[G] // k[G] defined by S(g) = g−1.
For instance, the simplest infinite noncommutative example is the group
algebra over k of the infinite dihedral group

G =
〈
a, x | xax = a−1, x2 = 1

〉
.

In this case k[G] is the k-algebra generated by a, a−1, x subject to the above
relations and aa−1 = 1 = a−1a.

(iii) Let (G, e) be a group. Then F(G) = {f : G // k} is an algebra with the
point-wise multiplication. Moreover F(G) is a Hopf algebra, the counit and
the antipode are defined as

ε(f) = f(e)

S(f)(g) = f(g−1)

Note that F(G×G) ∼= F(G)⊗F(G) as k-algebras, this isomorphism sends
f1 ⊗ f2 to the function defined by (g, h) 7−→ f1(g)f2(h). The comultiplica-
tion is given by

∆ : F(G)
◦µ // F(G×G)

∼= // F(G)⊗F(G) .

(iv) By Example 1.15(ii), O(Matn(k)) is a bialgebra. Consider the factor bial-
gebra given by the biideal 〈D − 1〉 (Example 1.17).

O(Sln(k)) = O(Matn(k))/ 〈D − 1〉 .
Recall that if A is a matrix with nonzero determinant, the inverse of

A can be computed as A−1 = 1
D(A)adj(A), where adj(A) is the matrix of

cofactors.
Define S : O(Sln(k)) // O(Sln(k)) as SXij the ij-entry of (Xij)

−1

(modulo D − 1). Then,

(S ∗ IO(Sl2(k)))(Xij) =

n∑
k=1

S(Xik)Xkj =

{
1 if i = j

0 otherwise
= ε(Xij)1.

Thus, S is an antipode and so O(Sln(k)) is a Hopf algebra. In particular
O(Sl2(k)) = K[a, b, c, d | ad − bc = 1] where we have written a for X11, b
for X12 and so on. Hence,
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a b c d
∆ a⊗ a+ b⊗ c a⊗ b+ b⊗ d c⊗ a+ d⊗ c c⊗ b+ d⊗ d
ε 1 0 0 1
S d −b −c a.

(v) Consider the ring of fractions of O(Matn(k)):

O(GLn(k)) = O(Matn(k))[D−1].

So, a canonical element inO(GLn(k)) has the form f
Dn with f ∈ O(Matn(k))

and n > 0. Let ϕ : O(Matn(k)) // O(GLn(k)) be the localization mor-
phism. Note that (ϕ⊗ϕ)∆(D) = 1

D ⊗
1
D . Hence (ϕ⊗ϕ)∆(D) is invertible

in O(GLn(k)) ⊗ O(GLn(k)). Thus, there exists a unique algebra mor-
phism ∆D : O(GLn(k)) // O(GLn(k)) ⊗ O(GLn(k)). We can see that

∆D( f
Dn ) =

∑ f1
Dn ⊗ f2

Dn where ∆(f) =
∑
f1⊗f2. On the other hand. since

ε(D) = 1, there exists a unique algebra morphism εD : O(GLn(k)) // k
such that ε( f

Dn ) = f(In). It is not difficult to see that (O(GLn(k)),∆D, εD)
is a bialgebra. Moreover, O(GLn(k)) is a Hopf algebra where the antipode
can be defined as in the previous example.

(vi) Let g be a Lie algebra and let U(g) its universal enveloping algebra. The
universal enveloping algebra U(g) is the quotient of the tensor algebra
T (g) =

⊕
n≥0 g

⊗n by the two sided ideal generated by the elements x⊗y−
y⊗x− [x, y] for all x, y ∈ g. The Poicaré-Birkhoff-Witt Theorem [5] asserts
that if {xi}I is any basis for g, where the index set I is totally ordered, the
set of monomials {xi1xi2 · · ·xik} where k ≥ 1 and i1 ≤ i2 ≤ · · · ≤ ik, is a
basis for U(g). The composition of the natural maps g // T (g) // U(g) is
an embedding. Hence we can identify g with its image in U(g). To define an
algebra morphism from U(g), it is enough to define it in g, since g generates
T (g) as algebra and check that the morphism pass to the factor algebra.
We define the following morphisms:

∆(x) = x⊗ 1 + 1⊗ x

ε(x) = 0,

for x ∈ g. Let us see that these algebra morphisms pass to U(g).

∆(xy − yx) = ∆(x)∆(y)−∆(y)∆(x)

= (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)− (y ⊗ 1 + 1⊗ y)(x⊗ 1 + 1⊗ x)

= (xy ⊗ 1 + x⊗ y + y ⊗ x+ 1⊗ xy)− (yx⊗ 1 + y ⊗ x+ x⊗ y + 1⊗ yx)

= (xy − yx)⊗ 1 + 1⊗ (xy − yx)

= [x, y]⊗ 1 + 1⊗ [x, y]

= ∆([x, y])

Hence ∆ defines an algebra morphism from U(g) // U(g) ⊗ U(g). It is
clear that ε : U(g) // k is an algebra homomorphism. Now, define S :
T (g) // U(g)op by the rule

S(x) = −x.

Then, S is an anti-homomorphism S : T (g) // U(g). Hence,

S(xy−yx) = S(xy)−S(yx) = S(y)S(x)−S(x)S(y) = yx−xy = −[x, y] = S([x, y]).
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Hence, S : U(g) // U(g). Moreover, for any x ∈ g

(S ∗ IU(g))(x) = S(x)1 + S(1)x = −x+ x = 0 = uε(x)

Analogously,

(IU(g) ∗ S)(x) = xS(1) + 1S(x) = x− x = 0 = uε(x)

Let y ∈ g and x ∈ U(g), then:

(S ∗ IU(g))(xy) = µ(S ⊗ IU(g))∆(xy)

= µ(S ⊗ IU(g))(∆(x)∆(y))

= µ(S ⊗ IU(g))(∆(x)(y ⊗ 1 + 1⊗ y))

= µ(S ⊗ IU(g))(∆(x)(y ⊗ 1) + ∆(x)(1⊗ y))

= µ(S ⊗ IU(g))(∆(x)(y ⊗ 1)) + µ(S ⊗ IU(g))(∆(x)(1⊗ y))

= µ(S ⊗ IU(g))((
∑

x1 ⊗ x2)(y ⊗ 1)) + µ(S ⊗ IU(g))((
∑

x1 ⊗ x2)(1⊗ y))

= µ(S ⊗ IU(g))(
∑

x1y ⊗ x2) + µ(S ⊗ IU(g))(
∑

x1 ⊗ x2y)

=
∑

S(x1y)x2 +
∑

S(x1)x2y

=
∑

S(y)S(x1)x2 +
∑

S(x1)x2y

= S(y)(S ∗ IU(g))(x) + (S ∗ IU(g))(x)y

= −y(S ∗ IU(g))(x) + (S ∗ IU(g))(x)y

In particular, if x, y ∈ g, then (S ∗ IU(g))(xy) = 0. Therefore, by induc-
tion (S ∗ IU(g))(xi1xi2 · · ·xik) = 0 for every monoid. Analogously (IU(g) ∗
S)(xi1xi2 · · ·xik) = 0. Thus S is an antipode, and so U(g) is a Hopf algebra.

Consider g = sl2(k), with k-basis,

e = ( 0 1
0 0 ) f = ( 0 0

1 0 ) h =
(

1 0
0 −1

)
.

Then U(g) is the k-algebra with generators e, f and h and relations

he− eh = 2e hf − fh = −2f ef − fe = h

Proposition 1.25. Let (H,µ, u,∆, ε, S) be a Hopf algebra.

(1) S(gh) = S(h)S(g) and S(1H) = 1H .
(2) If H is either commutative or co-commutative then S2 = IH .

Proof. 1. We have that H ⊗H is a coalgebra, then Homk(H ⊗H,H) is an algebra.
Let m, ρ ∈ Homk(H ⊗H,H) as follows:

m(g ⊗ h) = S(h)S(g)

ρ(g ⊗ h) = S(gh)
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We claim that ρ ∗ µ = µ ∗m = uε⊗.

ρ ∗ µ(g ⊗ h) = µ(ρ⊗ µ)∆⊗(g ⊗ h)

= µ(S ⊗ IH)(µ⊗ µ)∆⊗(g ⊗ h)

∆ is an alg. morph. = µ(S ⊗ IH)∆µ(g ⊗ h)

= µ(S ⊗ IH)∆(gh)

= µ(S ⊗ IH)(
∑

(gh)1 ⊗ (gh)2)

=
∑

S((gh)1)(gh)2

By (1.5) = ε(gh)1H

= uε⊗(g ⊗ h)

On the other hand,

µ ∗m(g ⊗ h) = µ(µ⊗m)∆⊗(g ⊗ h)

= µ(µ⊗ µ)(IH⊗H ⊗ (S ⊗ S))(IH⊗H ⊗ τ)(
∑

g1 ⊗ h1 ⊗ g2 ⊗ h2)

= µ(µ⊗ µ)(IH⊗H ⊗ (S ⊗ S))(
∑

g1 ⊗ h1 ⊗ h2 ⊗ g2)

= µ(µ⊗ µ)(
∑

g1 ⊗ h1 ⊗ S(h2)⊗ S(g2))

=
∑

g1h1S(h2)S(g2)

By (1.6) =
∑

g1ε(h)S(g2)

By (1.6) = ε(g)ε(h)1H

= uε⊗(g ⊗ h)

Hence ρ and m are inverses of µ in the convolution product. Thus, ρ = m. Now,
we have that S ∗ IH = uε, hence

1H = ε(1H)1H = uε(1H) = (S ∗ IH)(1H) = S(1H)1H = S(1H)

2. Suppose H is commutative. Then,

(S ∗ S2)(g) = µ(S ⊗ S2)∆(g)

= µ(S ⊗ S2)(
∑

g1 ⊗ g2)

=
∑

S(g1)S2(g2)

= S(
∑

S(g2)g1)

H is commutative = S(
∑

g1S(g2))

= S(ε(g))

= ε(g)S(1H)

= ε(g)1H

= uε(g)

Analogously, S2 ∗ S = uε. Hence S2 is an inverse of S in the convolution product.
Thus S2 = IH . �

References: [1], [2], [3], [4].
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2. Margin notes and Exercises

Pag. 5, Eq (3).

In the ring Matn(k) we have additional structure given by the multiplication of
row or column vectors by matrices. These give morphisms

R : kn ×Matn(k) // kn and C : Matn(k)× kn // kn.

Hence R and C induces algebra homomorphisms in the coordinate rings:

O(kn) //O(kn ×Matn(k)) ∼= O(kn)⊗O(Matn(k))

and

O(kn) //O(Matn(k)× kn) ∼= O(Matn(k))⊗O(kn)

given by precompose R and C respectively. Let us check what the first morphism
is doing. Consider the coordinate function xj ∈ O(kn) and let (a1, ..., an) ∈ kn and
(bij) ∈ Matn(k). Then

xjR((a1, ..., an), (bij)) = xj(

n∑
i=1

aibi1, ...,

n∑
i=1

aibin) =

n∑
i=1

aibij .

This implies that

xj 7−→
n∑
i=1

xi ⊗Xij ∈ O(kn)⊗O(Matn(k)).

Analogously,

xi 7−→
n∑
j=1

Xij ⊗ xj ∈ O(Matn(k))⊗O(kn).

which are equations (3) in [1, Pp. 5].

Example I.1.6 and Exercise I.1.C

We want to quantize Sln(k) (Example 1.24(iv)) but first we have to quantize
Matn(k) (Example 1.15(ii)). For, we need a bialgebra (B,µ, u,∆, ε), generated as
k-algebra by elements Xij satisfying:

∆(Xij) =

n∑
`=1

Xi` ⊗X`j

and

ε(Xij) = δij ;

which supports k-algebra homomorphisms

R : Oq(kn) //Oq(kn)⊗B and C : Oq(kn) //B ⊗Oq(kn)

satisfying:

xj 7−→
n∑
i=1

xi ⊗Xij and xi 7−→
n∑
j=1

Xij ⊗ xj .

where Oq(kn) = k 〈x1, ..., xn | xixj = qxjxi for i < j〉 the quantum affine n-space.
For convenience, let us check the case n = 2. Consider ρi : Oq(kn) // k defined

as ρi(xj) = δij for i = 1, 2. It is clear that ρi is a k-algebra homomorphism for all
1 ≤ i ≤ n. Then we have the compositions

(ρi ⊗ 1)R : Oq(k2) //B
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and

(1⊗ ρj)C : Oq(k2) //B.

Note that (ρi ⊗ 1)R(xj) = Xij and (1⊗ ρj)C(xi) = Xij . Hence,

X1`X2` = (1⊗ ρ`)C(x1x2) = (1⊗ ρ`)C(qx2x1) = qX2`X1`

X`1X`2 = (ρ` ⊗ 1)R(x1x2) = (ρ` ⊗ 1)R(qx2x1) = qX`2X`1
(2.1)

for ` = 1, 2.
On the other hand,

C(x1x2) = (X11 ⊗ x1 +X12 ⊗ x2)(X21 ⊗ x1 +X22 ⊗ x2)

= X11X21 ⊗ x2
1 +X12X21 ⊗ x2x1 +X11X22 ⊗ x1x2 +X12X22 ⊗ x2

2

= X11X21 ⊗ x2
1 + (q−1X12X21 +X11X22)⊗ x1x2 +X12X22 ⊗ x2

2

qC(x2x1) = q(X21 ⊗ x1 +X22 ⊗ x2)(X11 ⊗ x1 +X12 ⊗ x2)

= qX21X11 ⊗ x2
1 + qX22X11 ⊗ x2x1 + qX21X12 ⊗ x1x2 + qX22X12 ⊗ x2

2

= X11X21 ⊗ x2
1 + (X22X11 + qX21X12)⊗ x1x2 +X12X22 ⊗ x2

2

Then (q−1X12X21 +X11X22)− (X22X11 + qX21X12)⊗ x1x2 = 0. Analogously,
using R we have x1x2 ⊗ (q−1X21X12 +X11X22)− (X22X11 + qX12X21) = 0.

Remark 2.1. Let V and W be k-vector spaces. Take 0 6= w ∈ W then the k-
morphism (w ⊗ ) : V //W ⊗ V is injective.

By the Remark we have that

X11X22 −X22X11 = qX21X12 − q−1X12X21 = qX12X21 − q−1X21X12.(2.2)

Now, suppose q2 6= −1. Then multiplying equation 2.2 by q we get

q2X21X12 −X12X21 = q2X12X21 −X21X12

and so

−q2(X12X21 −X21X12) = X12X21 −X21X12.

It implies that

(2.3) X12X21 = X21X12

Therefore

(2.4) X11X22 −X22X11 = qX21X12 − q−1X12X21 = (q − q−1)X12X21

Exercise I.1.D

Let B the k-algebra given by generators X11, X12, X21, X22 and the relations
2.1,2.2,2.3 and 2.4. Let us see that the k-algebra morphism

∆ : k 〈X11, X12, X21, X22〉 //B ⊗B
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defined in generators as ∆(Xij) = Xi1 ⊗X1j +Xi2 ⊗X2j respects the relations in
B.

∆(X`1X`2) = (X`1 ⊗X11 +X`2 ⊗X21)(X`1 ⊗X12 +X`2 ⊗X22)

= X2
`1 ⊗X11X12 +X`2X`1 ⊗X21X12 +X`1X`2 ⊗X11X22 +X2

`2 ⊗X21X22

Using 2.1 = X2
`1 ⊗X12X11 +X`2X`1 ⊗X21X12 + qX`2X`1 ⊗X11X22 +X2

`2 ⊗X22X21

= X2
`1 ⊗X12X11 +X`2X`1 ⊗ (X21X12 + qX11X22) +X2

`2 ⊗X22X21

On the other hand

q∆(X`2X`1) = q [(X`1 ⊗X12 +X`2 ⊗X22)(X`1 ⊗X11 +X`2 ⊗X21)]

= q
[
X2
`1 ⊗X12X11 +X`2X`1 ⊗X22X11 +X`1X`2 ⊗X12X21 +X2

`2 ⊗X22X21

]
Using 2.1 = q

[
X2
`1 ⊗X12X11 +X`2X`1 ⊗X22X11 + qX`2X`1 ⊗X12X21 +X2

`2 ⊗X22X21

]
= q

[
X2
`1 ⊗X12X11 +X`2X`1 ⊗ (X22X11 + qX12X21) +X2

`2 ⊗X22X21

]
Using 2.2 = q

[
X2
`1 ⊗X12X11 +X`2X`1 ⊗ (X11X22 + q−1X21X12) +X2

`2 ⊗X22X21

]
Thus ∆(X`1X`2) = q∆(X`2X`1) for ` = 1, 2.

∆(X11X22) = (X11 ⊗X11 +X12 ⊗X21)(X21 ⊗X12 +X22 ⊗X22)

= X11X21 ⊗X11X12 +X12X21 ⊗X21X12 +X11X22 ⊗X11X22 +X12X22 ⊗X21X22

Using 2.1 = q2X21X11 ⊗X12X11 +X12X21 ⊗X21X12 +X11X22 ⊗X11X22 + q2X22X12 ⊗X22X21

∆(X22X11) = (X21 ⊗X12 +X22 ⊗X22)(X11 ⊗X11 +X12 ⊗X21)

= X21X11 ⊗X12X11 +X21X12 ⊗X12X21 +X22X11 ⊗X22X11 +X22X12 ⊗X22X21

q∆(X21X12) = q(X21 ⊗X11 +X22 ⊗X21)(X11 ⊗X12 +X12 ⊗X22)

= q [X21X11 ⊗X11X12 +X22X11 ⊗X21X12 +X21X12 ⊗X11X22 +X22X12 ⊗X21X22]

q−1∆(X12X21) = q−1(X11 ⊗X12 +X12 ⊗X22)(X21 ⊗X11 +X22 ⊗X21)

= q−1 [X11X21 ⊗X12X11 +X11X22 ⊗X12X21 +X12X21 ⊗X22X11 +X12X22 ⊗X22X21]

Using 2.1 = q−1 [X21X11 ⊗X11X12 +X11X22 ⊗X12X21 +X12X21 ⊗X22X11 +X22X12 ⊗X21X22]

In this way, the other relations can be checked. The k-algebra morphism

ε : k 〈X11, X12, X21, X22〉 // k

defined in generators as ∆(Xij) = δij respects the relations in B. If fact, ε sends
all the relations in B to zero. Hence, we have a bialgebra denoted Oq(Mat2(k))
called the quantum 2× 2 matrix algebra. Now let us see that the maps

R : Oq(k2) //Oq(k2)⊗B and C : Oq(k2) //B ⊗Oq(k2)

given by:

xj 7−→ x1 ⊗X1j + x2 ⊗X2j and xi 7−→ Xi1 ⊗ x1 +Xi2 ⊗ x2,
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are well defined, that is, R(x1x2) = R(qx2x1) and C(x1x2) = C(qx2x1).

R(x1x2) = (x1 ⊗X11 + x2 ⊗X21)(x1 ⊗X12 + x2 ⊗X22)

= x2
1 ⊗X11X12 + x2x1 ⊗X21X12 + x1x2 ⊗X11X22 + x2

2 ⊗X21X22

Using 2.1 = qx2
1 ⊗X12X11 + x2x1 ⊗X21X12 + qx2x1 ⊗X11X22 + qx2

2 ⊗X22X21

= qx2
1 ⊗X12X11 + x2x1 ⊗ (X21X12 + qX11X22) + qx2

2 ⊗X22X21

Using 2.2 = qx2
1 ⊗X12X11 + x2x1 ⊗ (q2X12X21 + qX22X11) + qx2

2 ⊗X22X21

On the other hand

qR(x2x1) = (x1 ⊗X12 + x2 ⊗X22)(x1 ⊗X11 + x2 ⊗X21)

= q
[
x2

1 ⊗X12X11 + x2x1 ⊗X22X11 + x1x2 ⊗X12X21 + x2
2 ⊗X22X21

]
= q

[
x2

1 ⊗X12X11 + x2x1 ⊗X22X11 + qx2x1 ⊗X12X21 + x2
2 ⊗X22X21

]
= q

[
x2

1 ⊗X12X11 + x2x1 ⊗ (X22X11 + qX12X21) + x2
2 ⊗X22X21

]
Thus R(x1x2) = R(qx2x1). Analogously, C(x1x2) = C(qx2x1).

Exercise I.1.E

It can be seen that in last exercise, all computations were made using equations
2.1 and 2.2. Hence, we have a bialgebra B satisfying equations 2.1 and 2.2. Now,
consider the ordered monomials X•11X

•
12X

•
21X

•
22 in B. From equation 2.2 we get

that X21X12 = q2X12X21 + qX11X22 + qX22X11. This implies that the monomials
X•11X

•
12X

•
21X

•
22 generate X21X12 if and only if they generate X22X11.

Pag. 6, Example I.1.8
The exterior algebra Λ(V ) of a vector space V over a field k is defined as the

quotient algebra of the tensor algebra T (V ) by the two-sided ideal 〈x⊗ x〉 with
x ∈ V , that is

Λ(V ) = T (V )/ 〈x⊗ x〉 .

The coset of an element x1 ⊗ x2 ⊗ · · · ⊗ xn is denoted as x1 ∧ x2 ∧ · · · ∧ xn. Note
that if the dimension of V is n, any coset x1 ∧ x2 ∧ · · · ∧ x` with ` > n is zero. Let
us consider Λ(k2).

If {x1, x2} is a basis of k2, there is a k-linear map

k2 //O(Mat2(k))⊗ Λ(k2)

given by

x1 7−→ X11 ⊗ x1 +X12 ⊗ x2

x2 7−→ X21 ⊗ x1 +X22 ⊗ x2

By the universal property of T (k2) there exists a unique k-algebra homomorphism

T (k2) //O(Mat2(k))⊗ Λ(k2).

Let us see that this mapping factors through the tensor algebra.
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x1 ⊗ x1 7−→(X11 ⊗ x1 +X12 ⊗ x2)(X11 ⊗ x1 +X12 ⊗ x2)

= X2
11 ⊗ x1 ∧ x1 +X11X12 ⊗ x1 ∧ x2 +X12X11 ⊗ x2 ∧ x1 +X2

12 ⊗ x2 ∧ x2

= X11X12 ⊗ x1 ∧ x2 −X11X12 ⊗ x1 ∧ x2

= 0.

x1 ⊗ x2 7−→(X11 ⊗ x1 +X12 ⊗ x2)(X21 ⊗ x1 +X22 ⊗ x2)

= X11X21 ⊗ x1 ∧ x1 +X11X22 ⊗ x1 ∧ x2 +X12X21 ⊗ x2 ∧ x1 +X12X22 ⊗ x2 ∧ x2

= X11X22 −X12X21 ⊗ x1 ∧ x2

x2 ⊗ x1 7−→(X21 ⊗ x1 +X22 ⊗ x2)(X11 ⊗ x1 +X12 ⊗ x2)

= X21X11 ⊗ x1 ∧ x1 +X22X11 ⊗ x2 ∧ x1 +X21X12 ⊗ x1 ∧ x2 +X22X12 ⊗ x2 ∧ x2

= −(X11X22 −X12X21)⊗ x1 ∧ x2

(2.5)

Analogously, x2 ⊗ x2 7−→ 0. Hence x⊗ x 7−→ 0 for all x ∈ k2. Therefore, there is a
k-algebra homomorphism

Λ(k2) //O(Mat2(k))⊗ Λ(k)

sending

x1 ∧ x2 7−→ det(Xij)⊗ x1 ∧ x2.

Exercise I.1.F

The quantum exterior algebra Λq(k
2) is defined to be the k-algebra given by

generators ξ1 and ξ2 and relations

(2.6) ξ2
1 = 0 = ξ2

2 and ξ2ξ1 = −qξ1ξ2.

Consider the map φ : k 〈ξ1, ξ2〉 //Oq(Mat2(k))⊗ Λq(k
2) given by

φ(ξ1) = X11 ⊗ ξ1 +X12 ⊗ ξ2 and φ(ξ2) = X21 ⊗ ξ1 +X22 ⊗ ξ2.

Then,

φ(ξ1ξ1) = (X11⊗ ξ1 +X12 ⊗ ξ2)(X11⊗ ξ1 +X12 ⊗ ξ2)

= X2
11 ⊗ ξ2

1 +X12X11 ⊗ ξ2ξ1 +X11X12 ⊗ ξ1ξ2 +X2
12 ⊗ ξ2

2

= (−qX12X11 +X11X12)⊗ ξ1ξ2
Using 2.1 = 0

Analogously, φ(ξ2
2) = 0.

φ(ξ2ξ1) = (X21 ⊗ ξ1 +X22 ⊗ ξ2)(X11⊗ ξ1 +X12 ⊗ ξ2)

= X21X11 ⊗ ξ2
1 +X22X11 ⊗ ξ2ξ1 +X21X12 ⊗ ξ1ξ2 +X22X12 ⊗ ξ2

2

By 2.6 = (X21X12 − qX22X11)⊗ ξ1ξ2
By 2.2 = (q2X12X21 − qX11X22)⊗ ξ1ξ2.

On the other hand,
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−qφ(ξ1ξ2) = −q(X11⊗ ξ1 +X12 ⊗ ξ2)(X21 ⊗ ξ1 +X22 ⊗ ξ2)

= −q
[
X11X21 ⊗ ξ2

1 +X12X21 ⊗ ξ2ξ1 +X11X22 ⊗ ξ1ξ2 +X12X22 ⊗ ξ2
2

]
By 2.6 = −q(X11X22 − qX12X21)⊗ ξ1ξ2

= (q2X12X21 − qX11X22)⊗ ξ1ξ2

Thus, we have a k-algebra homomorphism

φ : Λq(k
2) //Oq(Mat2(k))⊗ Λq(k

2).

Note that

φ(ξ1ξ2) = (X11X22 − qX12X21)⊗ ξ1ξ2.
Exercise I.1.G

Now, consider the element Dq = X11X22 − qX12X21 ∈ Oq(Mat2(k)). We claim
that Dq is in the centre of Oq(Mat2(k)).

DqX11 = (X11X22 − qX12X21)X11

= X11X22X11 − qX12X21X11

= X11X22X11 − qX12(q−1X11X21)

= X11X22X11 −X12X11X21

= X11X22X11 − q−1X11X12X21

= X11(X22X11 − q−1X12X21)

By 2.2 = X11(X11X22 − qX21X12)

By 2.3 = X11(X11X22 − qX12X21)

= X11Dq

DqX12 = (X11X22 − qX12X21)X12

= X11X22X12 − qX12X21X12

= X11(q−1X12X22)− qX12X21X12

= X12X11X22 − qX12X21X12

= X12(X11X22 − qX21X12)

= X12(X11X22 − qX12X21)

= X12Dq

In the same way, it can be seen that Dq commutes with all the generators. Thus
Dq is a central element. Therefore, we can define

Oq(Sl2(k)) = O(Mat2(k))/ 〈Dq − 1〉

Exercise I.1.H

Let see that the comultiplication ∆ and the counit ε in Oq(Mat2(k)) induce a
multiplication and a counit inOq(Sl2(k)). For, consider ∆ : Oq(Mat2(k)) //Oq(Sl2(k))⊗
Oq(Sl2(k)) given by

∆(Xij) = Xi1 ⊗X1j +Xi2 ⊗X2j .
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Then,

∆(X11)∆(X22) = (X11 ⊗X11 +X12 ⊗X21)(X21 ⊗X12 +X22 ⊗X22)

= X11X21 ⊗X11X12 +X12X21 ⊗X21X12 +X11X22 ⊗X11X22 +X12X22 ⊗X21X22

q∆(X12)∆(X21) = q(X11 ⊗X12 +X12 ⊗X22)(X21 ⊗X11 +X22 ⊗X21)

= q [X11X21 ⊗X12X11 +X12X21 ⊗X22X11 +X11X22 ⊗X12X21 +X12X22 ⊗X22X21]

= X11X21 ⊗ qX12X11 +X12X21 ⊗ qX22X11 +X11X22 ⊗ qX12X21 +X12X22 ⊗ qX22X21

Hence

∆(Dq) = ∆(X11X22 − qX12X21)

= X12X21 ⊗ (X21X12 − qX22X11) +X11X22 ⊗ (X11X22 − qX12X21)

= X12X21 ⊗ (q2X12X21 − qX11X22) +X11X22 ⊗ 1

= −qX12X21 ⊗ (X11X22 − qX12X21) +X11X22 ⊗ 1

= X11X22 − qX12X21 ⊗ 1

= 1⊗ 1

Thus ∆(Dq − 1) = 0 and so, we have a k-algebra homomorphism

∆ : Oq(Sl2(k)) //Oq(Sl2(k))⊗Oq(Sl2(k)).

Recall that the counit ε : Oq(Mat2(k)) // k is given by ε(Xij) = δij . Then,

ε(Dq) = ε(X11X22 − qX12X21) = ε(X11X22)− ε(qX12X21) = 1.

Thus ε(Dq − 1) = 0, and so, we have a k-algebra homomorphism

ε : Oq(Sl2(k)) // k.

This implies that (Oq(Sl2(k)),∆, ε) is a bialgebra.
Given an algebra A, the opposite algebra Aop is the algebra such that as k-vector

space is equal to A and the product is given by a · b = ba ∈ A.
Consider the following map S : k〈X11, X12, X21, X22〉 // Oq(Sl2(k))op defined

in generators as

S(X11) = X22 S(X12) = −q−1X12

S(X21) = −qX21 S(X22) = X11.

We have to check that this k-algebra homomorphism can be defined fromOq(Slq(k)),
that is, we have to check that S respects the relations 2.1,2.3, 2.4 and S(Dq) = 1.

S(X12X22) = S(X22)S(X12)

= −q−1X11X12

= −X12X11

= S(qX22X12).
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S(X12X21) = S(X21)S(X12)

= (−qX21)(−q−1X12)

= X21X12

= X12X21

= (−q−1X12)(−qX21)

= S(X21X12)

S(X11X22 −X22X11) = S(X11X22)− S(X22X11)

= X11X22 −X22X11

= (q − q−1)X12X21

= (q − q−1)S(X12X21).

S(Dq) = S(X11X22 − qX12X21)

= X11X22 −X12X21

= 1

Hence we have an anti-automorphism

S : Oq(Sl2(k)) //Oq(Slq(k)).

Now, note that

(id ∗ S)(X11) = X11S(X11) +X12S(X21)

= X11X22 − qX12X21

= 1

= uε(X11)

(id ∗ S)(X12) = X11S(X12) +X12S(X22)

= −q−1X11X12 +X12X11

= 0

= uε(X12)

Thus, (Oq(Sl2(k)),∆, ε, S) is a Hopf algebra.

Exercise I.1.I

Exercise I.1.J

Consider the quantum plane

Oq(k2) = k 〈x1, x2〉 /
〈
x2x1 − q−1x1x2

〉
.

Hence, the reduction system is just

{(x2x1, q
−1x1x2)}.

That implies that there are no inclusion ambiguities and overlap ambiguities.
Note that the irreducible monomials are xi1x

j
2 for all i, j > 0. Thus, by the Diamond

Lemma ( [1, I.11.6]), {xi1x
j
2 | i, j ≥ 0} is a basis for the quantum plane.

Exercise I.1.K
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Using the Diamond Lemma, it can be seen that the monomials a•b•c•d• in
O(Mat2(k)) are linearly independent ( [1, I.11.7]). We claim that d is a regular
element of Oq(Mat2(k)). Let x ∈ Oq(Mat2(k)) such that xd = 0. We can write
x =

∑n
i=1 kia

`ibmicnidji . Then

0 = xd =

n∑
i=1

kia
`ibmicnidjid =

n∑
i=1

kia
`ibmicnidji+1.

This implies that ki = 0 for 1 ≤ i ≤ n. Therefore x = 0.
Now suppose dx = 0, that is,

0 = d

n∑
i=1

kia
`ibmicnidji =

n∑
i=1

kida
`ibmicnidji .

Let us look at the term da`i and suppose `i > 0. Then

da`i = (da)a`i−1

= (ad− q̂bc)a`i−1

= ada`i−1 − q̂bca`i−1

= ada`i−1 − q̂bq−(`i−1)a`i−1c

= ada`i−1 − q̂q−2(`i−1)a`i−1bc

Therefore

da`i = a`id−
`i∑
h=1

q̂q−2(`i−h)a`i−hbc.

Hence,

0 =

n∑
i=1

kida
`ibmicnidji

=

n∑
i=1

ki

(
a`id−

`i∑
h=1

q̂q−2(`i−h)a`i−hbc

)
bmicnidji

=

n∑
i=1

kia
`idbmicnidji −

`i∑
h=1

kiq̂q
−2(`i−h)a`i−hbcbmicnidji

=

n∑
i=1

kia
`iq−miq−nibmicniddji −

`i∑
h=1

kiq̂q
−2(`i−h)a`i−hbmi+1cni+1dji

=

n∑
i=1

kiq
−(mi+ni)a`ibmicnidji+1 −

`i∑
h=1

kiq̂q
−2(`i−h)a`i−hbmi+1cni+1dji

Note that all the monomials are different and since they are linearly independent,
we have that 0 = kiq

−(mi+ni) for all 1 ≤ i ≤ n which implies that ki = 0. Thus
x = 0 and so d is a regular element.

Note that with a similar argument we have that dA ∩A = 0 = Ad ∩A where A
is the k-subalgebra of Oq(Mat2(k2)) generated by a, b, c.

Exercise I.1.L
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Let R ⊆ S be rings, and suppose that there is a regular element d ∈ S such
that dR + R = Rd + R and dR ∩ R = 0 = Rd ∩ R. Then there are unique maps
τ, δ : R // R such that dr = τ(r)d + δ(r) for all r ∈ R. Show that τ is an
automorphism of R and that δ is a τ -derivation on R.

Since dR + R = Rd + R, for r ∈ R, let τ(r) and δ(r) elements in R such that
dr = τ(r)d + δ(r). If dr = ad + b = cd + e, then (a − c)d = e − b ∈ Rd ∩ R = 0.
Hence (a−c)d = 0. Since d is regular, a = c, and so b = e. Therefore, τ(r) and δ(r)
are unique and so we have functions τ, δ : R //R. Analogously, there exist τ ′ and
δ′ such that rd = dτ ′(r) + δ′(r). Let r, t ∈ R. Then d(r + t) = τ(r + t)d+ δ(r + t).
On the other hand,

d(r + t) = dr + dt = τ(r)d+ δ(r) + τ(t)d+ δ(t) = (τ(r) + τ(t))d+ δ(r) + δ(t).

It follows that τ(r + t) = τ(r) + τ(t) and δ(r + t) = δ(r) + δ(t). Note that, if
τ(r) = 0, then dr = δ(r) ∈ dR ∩ R = 0. Hence dr = 0 and so r = 0. Thus, τ and
τ ′ are injective. Now, we have that

τ(r)d = dτ ′(τ(r)) + δ′(τ(r)) = ττ ′τ(r)d+ δ(τ ′τ(r)) + δ′(τ(r)).

Hence τ(r) = ττ ′τ(r). It follows that τ ′τ(r) = r. Analogously, ττ ′(r) = r. On the
other hand,

drs = τ(r)ds+ δ(r)s = τ(r)(τ(s)d+ δ(s)) + δ(r)s

= τ(r)τ(s)d+ τ(r)δ(s) + δ(r)s.

drs = τ(rs)d+ δ(rs).

Hence, τ(rs) = τ(r)τ(s) and δ(rs) = τ(r)δ(s) + δ(r)s. Thus, τ is an automorphism
of R and δ is a τ -derivation on R.

Exercise I.1.M

Let F = k 〈X1, ..., Xt〉 be the free algebra over k on letters X1, ..., Xt and let τ
be a k-algebra endomorphism of F . Given any f1, ..., ft ∈ F show that there exists
a unique k-linear τ -derivation δ on F such that δ(Xi) = fi for all 1 ≤ i ≤ t.

Let φ : F // Mat2(F ) be the k-algebra homomorphism given by φ(Xi) =(
τ(Xi) fi
0Xi

)
. Then

φ(XiXj) = φ(Xi)φ(Xj) =
(
τ(Xi) fi

0 Xi

)(
τ(Xj) fj

0 Xj

)
=
(
τ(Xi)τ(Xj) τ(Xi)fj+fiXj

0 XiXj

)
.

So, define δ : F // F as δ(X) = (1 0)φ(X) ( 0
1 ) for all X ∈ F . Then δ(XiXj) =

τ(Xi)fj + fiXj . Consider X1 and Xi(1) · · ·Xi(t) any monomial. We are going to
prove that δ is a τ -derivation on F by induction on t. Then,

δ(X1Xi(1) · · ·Xi(t))

= (1 0)φ(X1Xi(1) · · ·Xi(t)) ( 0
1 )

= (1 0)φ(X1)φ(Xi(1) · · ·Xi(t)) ( 0
1 )

= (1 0)
(
τ(X1) f1

0 X1

)(
τ(Xi(1)···Xi(t)) τ(Xi(1))δ(Xi(2)···Xi(t))+δ(Xi(1))Xi(2)···Xi(t)

0 Xi(1)···Xi(t)

)
( 0

1 )

= τ(X1)(τ(Xi(1))δ(Xi(2) · · ·Xi(t)) + δ(Xi(1))Xi(2) · · ·Xi(t)) + f1Xi(1) · · ·Xi(t)

= τ(X1)δ(Xi(1) · · ·Xi(t)) + δ(X1)Xi(1) · · ·Xi(t).

Hence δ is a τ -derivation on F , and it is clear that δ is unique.
Now let I = 〈G〉 be the ideal generated by some set G ⊆ F . If τ(g), δ(g) ∈ I

for all g ∈ G, show that I is stable under τ and δ. Let r, s ∈ F and g ∈ G. Then
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τ(rgs) = τ(r)τ(g)τ(s). By hypothesis, τ(g) ∈ I, hence τ(rgs) ∈ I. On the other
hand,

δ(rgs) = τ(r)δ(gs) + δ(r)gs

= τ(r)(τ(g)δ(s) + δ(g)s) + δ(r)gs

= τ(r)τ(g)δ(s) + τ(r)δ(g)s+ δ(r)gs.

Since τ(g), δ(g), g ∈ I, δ(rgs) ∈ I. It follows that τ induces a k-algebra endo-
moephism of F/I and δ induces a τ -derivation on F/I.

Exercise I.1.M

Consider the algebra Oq(Mat2(k)). We want to use the model approach to see
that this algebra is isomorphic to an iterated skew polynomial ring. First, we
construct an iterated skew polynomial algebra

B = k[x][y;σ2][z;σ3]

where k[x] is a polynomial ring, σ2 is the k-algebra automorphism of k[x] such
that σ2(x) = q−1x, and σ3 is the k-algebra automorphism of k[x][y;σ2] such
that σ3(x) = q−1x and σ3(y) = y. Consider the k-algebra homomorphism σ4 :
k 〈x, y, z〉 // k 〈x, y, z〉 given by σ4(x) = x, σ4(y) = q−1y and σ4(z) = q−1z.
By exercise I.1.L there exists a unique σ4-derivation δ4 on k 〈x, y, z〉 such that
δ4(x) = (q−1 − q)yz and δ4(y) = 0 = δ4(z). Consider the ideal

I =
〈
yx− q−1xy, zx− q−1xz, zy − yz

〉
.

Hence B = k 〈x, y, z〉 /I. Let see that the images of the generators of I under δ4
are in I.

δ4(yx) = σ4(y)δ4(x) + δ4(y)x

= q−1y(q−1 − q)yz
= (q−2 − 1)yyz.δ(xy) = σ4(x)δ4(y) + δ4(x)y = (q−1 − q)yzy.

Then,

δ4(yx− q−1xy) = (q−2 − 1)yyz − q−1(q−1 − q)yzy = (q−2 − 1)y(yz − zy).

We also have that,

δ4(zy) = σ4(z)δ4(y) + δ4(z)y = 0 = δ4(yz).

And,

δ4(zx) = σ4(z)δ4(x) + δ4(z)x

= q−1z(q−1 − q)yz
= (q−2 − 1)zyz.

δ4(xz) = σ4(x)δ4(z) + δ4(x)z

= (q−1 − q)yzz.
Then

δ4(zx− q−1xz) = (q−2 − 1)zyz − q−1(q−1 − q)yzz = (q−2 − 1)(zy − yz)z.
For the automorphism σ4, we have that

σ4(yx) = q−1yx

σ4(xy) = x(q−1y)
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Then,
σ4(yx− q−1xy) = q−1yx− q−2xy = q−1(yx− q−1xy).

Also,
σ4(zx) = q−1zx

σ4(xz) = x(q−1z)

Then,
σ4(zx− q−1xz) = q−1zx− q−2xz = q−1(zx− q−1xz)

And,
σ4(zy) = q−1zq−1y = q−2zy

σ4(yz) = q−1yq−1z = q−2yz

Then,
σ4(zy − yz) = q−2zy − q−2yz = q−2(yz − zy).

Thus, σ4 induces an automorphism of B and δ4 induces a σ4-derivation on B.

Exercise I.1.O

Construct a k-algebra isomorphism of Oq(GL2(k)) onto Laurent polynomial ring
Oq(Sl2(k))[z±]. Consider the k-algebra homomorphism

φ : k 〈X11, X12, X21, X22〉 //Oq(Sl2(k))[z±]

given by φ(X11) = X11z, φ(X12) = X12z, φ(X21) = X21 and φ(X22) = X22. We
have to check that φ preserves the relations 2.1,2.3,2.4.

φ(X11X21) = φ(X11)φ(X21)

= X11zX21

= zX11X21

= qzX21X11.

qφ(X21X11) = qφ(X21)φ(X11)

= qX21X11z

= qzX21X11.

Analogously the other relations in 2.1 are preserved. For 2.3,

φ(X12X21) = φ(X12X21)

= X12zX21

= X21X12z

= φ(X21)φ(X12)

= φ(X21X12).

For 2.4,

φ(X11X22 −X22X11) = φ(X11)φ(X22)− φ(X22)φ(X11)

= X11zX22 −X22X11z

= (X11X22 −X22X11)z

= (q − q−1)X21X12z

= (q − q−1)φ(X21)φ(X12)

= φ((q − q−1)X21X12).
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Thus, there is a k-algebra homomorphism

φ̂ : Oq(Mat2(k)) //Oq(Sl2(k))[z±].

Note that,

φ̂(Dq) = φ̂(X11X22 − qX12X21)

= φ̂(X11)φ̂(X22)− qφ̂(X12)φ̂(X21)

= zX11X22 − qzX12X21

= z(X11X22 − qX12X21)

= z.

Hence φ̂ sends Dq to an invertible element and so there exists a k-algebra homo-
morphism

φ : Oq(GL2(k)) //Oq(Sl2(k))[z±].

In order to see that φ is an isomorphism, we will give its inverse.
Define ψ : k 〈X11, X12, X21, X22〉 // Oq(GLn(k)) as ψ(X11) = X11

Dq
, ψ(X12) =

X12

Dq
, ψ(X21) = X21 and ψ(X22) = X22. It is not difficult to see that ψ induces a

k-algebra homomorphism

ψ̂ : Oq(Mat2(k)) //Oq(GL2(k)).

Then,

ψ̂(Dq) = ψ̂(X11X22 − qX12X21)

= ψ̂(X11)ψ̂(X22)− qψ̂(X12)ψ̂(X21)

=
X11

Dq
X22 − q

X12

Dq
X21

=
X11X22 − qX12X21

Dq

= 1.

Thus, ψ̂ induces a k-algebra homomorphism

ψ̂′ : Oq(Sl2(k)) //Oq(GL2(k)).

Hence, there exists a k-algebra homomorphism

ψ : Oq(Sl2(k))[z±] //Oq(GL2(k))

sending ψ(z) = Dq. It is clear that ψ is the inverse of φ.

Exercise I.3.A

Let r, s ∈ R. Then

φ(r)φ(s) =
(
α(r) δ(r)

0 r

) (
α(s) δ(s)

0 s

)
=
(
α(r)α(s) α(r)δ(s)+δ(r)s

0 rs

)
φ(rs) =

(
α(rs) δ(rs)

0 rs

)
It is clear that φ(rs) = φ(r)φ(s) if and only if δ is an α-derivation.

Ch. I.3 Proposition
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Proof. Let τ1 : k[K,K−1] // k[K,K−1] be the automorphism given by τ1(K) =
q−2K. Then we can construct the skew polynomial ring k[K,K−1][E; τ1]. Note
that,

KEK−1 = Kτ1(K−1)E = Kq2K−1E = q2E.

Let τ : k[K,K−1] // k[K,K−1][E; τ1] given by τ(K) = q2K. Then

Eτ(K) = Eq2K = KE = τ(τ1(K))E

Eτ(K−1) = Eq−2K−1 = K−1E = τ(τ1(K−1))E.

By the universal property of skew polynomial rings [6, 2.5], there exists a unique
automorphism

τ2 : k[K,K−1][E; τ1] // k[K,K−1][E; τ1]

sending τ2(K) = q2K and τ2(E) = E. Consider the following ring homomorphism

φ : k
〈
K,K−1, E

〉
// Mat2(k[K,K−1][E; τ1])

given by φ(K) =
(
q2K 0

0 K

)
and φ(E) =

(
E K−1−K

q−q−1

0 E

)
. Hence

φ(τ1(K)E) = φ(q−2KE)

= q−2
(
q2K 0

0 K

)(
E K−1−K

q−q−1

0 E

)
=

(
KE 1−K2

q−q−1

0 q−2KE

)
φ(EK) =

(
E K−1−K

q−q−1

0 E

)(
q2K 0

0 K

)
=
(
q2EK 1−K2

q−q−1

0 EK

)
=

(
KE 1−K2

q−q−1

0 q−2KE

)
Thus φ induces a ring homomorphism φ : k[K,K−1][E; τ1] //Mat2(k[K,K−1][E; τ1]).

By exercise I.3.A there exists a unique τ2-derivation δ2 on k[K,K−1][E; τ1] such

that δ2(K) = 0 and δ2(E) = K−1−K
q−q−1 . So we have an iterated skew polynomial ring

A = k[K,K−1][E; τ1][F ; τ2, δ2]. To see the isomorphism, we only have to check that
the defining relations in Uq(sl2(k)) are valid in A. For,

KEK−1 = Kτ1(K−1)E = Kq2K−1E = q2E.

KFK−1 = K(τ2(K−1)F + δ2(K−1) = Kq−2K−1F = q−2F.

FE = τ2(E)F + δ2(E) = EF +
K−1 −K
q − q−1

then EF − FE = K−1−K
q−q−1 . Thus, A ∼= Uq(sl2(k)). �

Hopf algebra structure of Uq(sl2(k))

We have that

Uq(sl2(k)) =
k
〈
E,F,K,K−1

〉〈
KEK−1 − q2E,KFK−1 − q−2F,EF − FE − (K−K−1)

q−q−1

〉
There is a k-algebra homomorphism

∆ : k
〈
E,F,K,K−1

〉
// Uq(sl2(k))⊗ Uq(sl2(k))
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sending ∆(E) = E ⊗ 1 +K ⊗ E, ∆(F ) = F ⊗K−1 + 1⊗ F and ∆(K) = K ⊗K.
Let us check that ∆ preserves the relations.

∆(KEK−1) = ∆(K)∆(E)∆(K−1)

= (K ⊗K)(E ⊗ 1 +K ⊗ E)(K−1 ⊗K−1)

= (KE ⊗K +K2 ⊗KE)(K−1 ⊗K−1)

= KEK−1 ⊗ 1 +K ⊗KEK−1

= −q2E ⊗ 1 +K ⊗−q2E

= −q2(E ⊗ 1 +K ⊗ E)

= ∆(−q2E)

∆(KFK−1) = ∆(K)∆(F )∆(K−1)

= (K ⊗K)(F ⊗K−1 + 1⊗ F )(K−1 ⊗K−1)

= (KF ⊗ 1 +K ⊗KF )(K−1 ⊗K−1)

= KFK−1 ⊗K−1 + 1⊗KFK−1

= q−2F ⊗K−1 + 1⊗ q−2F

= q−2(F ⊗K−1 + 1⊗ F )

= ∆(q−2F )

∆(EF ) = (E ⊗ 1 +K ⊗ E)(F ⊗K−1 + 1⊗ F )

= EF ⊗K−1 + E ⊗ F +KF ⊗ EK−1 +K ⊗ EF

∆(FE) = FE ⊗K−1 + E ⊗ F + FK ⊗K−1E +K ⊗ FE
Then,

∆(EF − FE) = (EF − FE)⊗K−1 +K ⊗ (EF − FE) + q−2FK ⊗ EK−1 − FK ⊗K−1E

=
(K −K−1)

q − q−1
⊗K−1 +K ⊗ (K −K−1)

q − q−1
+ FK ⊗ (q−2EK−1 −K−1E)

=
(K −K−1)

q − q−1
⊗K−1 +K ⊗ (K −K−1)

q − q−1
+ FK ⊗ (K−1E −K−1E)

=
K ⊗K−1 −K−1 ⊗K−1 +K ⊗K −K ⊗K−1

q − q−1

=
K ⊗K −K−1 ⊗K−1

q − q−1

= ∆

(
K −K−1

q − q−1

)
So, there is a unique k-algebra homomorphism

∆ : Uq(sl2(k)) // Uq(sl2(k))⊗ Uq(sl2(k))

To see that ∆ is coassociative, it just has to be proven in the generators.
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Consider the k-algebra homomorphism

S : k
〈
E,F,K,K−1

〉
// Uq(sl2(k))op

given by S(K) = K−1, S(E) = −K−1E and S(F ) = −FK. Then,

S(KEK−1) = S(K−1)S(KE)

= S(K−1)S(E)S(K)

= K(−K−1E)K−1

= −EK−1

= −q2K−1E

S(q2E) = q2S(E)

= −q2K−1E

S(KFK−1) = S(K−1)S(F )S(K)

= K(−FK)K−1

= −KF
= −q−2FK

S(q−2F ) = −q−2FK

S(EF ) = (−FK)(−K−1E) = FE

S(FE) = (−K−1E)(−FK) = K−1EFK

so,

S(EF − FE) = FE −K−1EFK

= FE − (q−2EK−1)(q2KF )

= FE − EF

=
K−1 −K
q − q−1

= S

(
K −K−1

q − q−1

)
Therefore S induces a unique k-algebra anti-homomorphism

S : Uq(sl2(k)) // Uq(sl2(k)).

Note that
S2(K) = S(K−1) = K = K−1KK

S2(E) = S(−K−1E) = −S(E)S(K−1) = K−1EK

S2(F ) = S(−FK) = −K−1(−FK) = K−1FK

This implies that S is bijetive and hence so is S. Now, let us prove that S is an
inverse of Id with the convolution product.

(S ∗ Id)(K) = S(K)K

= 1

= ε(K)
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(S ∗ Id)(E) = S(E) + S(K)E

= −K−1E +K−1E

= 0

= ε(E)

(S ∗ Id)(F ) = S(F )K−1 + F

= −FKK−1 + F

= −F + F

= 0

= ε(F )

Lemma 2.2. Let H be a Hopf algebra. Let a, b ∈ H such that (S ∗ Id)(a) = ε(a)
and (S ∗ Id)(b) = ε(b). Then (S ∗ Id)(ab) = ε(ab).

Proof.

(S ∗ Id)(ab) = µ ◦ (S ⊗ Id) ◦∆(ab)

= µ ◦ (S ⊗ Id)(∆(a)∆(b))

= µ ◦ (S ⊗ Id)(
∑

a1b1 ⊗ a2b2)

=
∑

S(a1b1)a2b2

=
∑

S(b1)S(a1)a2b2

=
∑

S(b1)ε(a)b2

= ε(a)
∑

S(b1)b2

= ε(a)ε(b)

�

By the lemma S is an antipode for Uq(sl2(k)). Therefore Uq(sl2(k)) is a Hopf
algebra.

Lemma 2.3. Consider the quantum plane Oq(k2). Then, the multiplicative set X
in Oq(k2) generated by x and y is a denominator set.

Proof. Let
∑
fi(x)yi ∈ Oq(k2) and q`xmyn ∈ X. Then∑

fi(x)yi(q`xmyn) = q`
∑

fi(x)(q−imxmyi)yn

= q`xm
∑

q−imfi(x)ynyi

Suppose that fi(x) = aikx
k + aik−1

xk−1 + · · ·+ ai1x+ ai0 . Then

(aikx
k + aik−1

xk−1 + · · ·+ ai1x+ ai0)yn = aikx
kyn + aik−1

xk−1yn + · · ·+ ai1xy
n + ai0y

n

= qknynaikx
k + q(k−1)nynaik−1

xk−1 + · · ·+ qnynai1x+ ynai0

For each i, define

gi(x) = qknaikx
k + q(k−1)naik−1

xk−1 + · · ·+ qnai1x+ ai0
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Then
(
∑

fi(x)yi)q`xmyn = (q`xmyn)
∑

q−imgi(x)yi.

Thus, X is a left denominator set. Analogously, X is a right denominator set. �

Exercise II.1.B

We claim that Oq((kx)2) = k
〈
x, x−1, y, y−1 | xy = qyx

〉
is a simple ring. Let I

be a nonzero ideal of Oq((kx)2) and let 0 6= a ∈ I. Since I is an ideal, we can assume
a =

∑n
i=0 fi(x)yi ∈ Oq(k2). By induction on n, we will prove that I contains a

unit.
n = 0. Then a = f0(x) = bmx

m + · · ·+ b1x+ b0. By induction on m. If m = 0,
a = b0 ∈ k. Now, suppose that m > 0. Then

ya = y(bmx
m + · · ·+ b1x+ b0)

= bmyx
m + · · ·+ b1yx+ b0y

= q−mbmx
my + · · ·+ q−1b1xy + b0y

Since I is an ideal ya− q−may ∈ I, and so

ya−q−may = (q−(m−1)−q−m)bm−1x
m−1y+· · ·+(q−1−q−m)b1xy+(1−q−m)b0y ∈ I

Since y is invertible,

(q−(m−1) − q−m)bm−1x
m−1 + · · ·+ (q−1 − q−m)b1x+ (1− q−m)b0 ∈ I.

By induction hypothesis, I contains a unit.
Now suppose n > 0. Then

ax = fn(x)ynx+ fn−1(x)yn−1x · · ·+ f1(x)yx+ f0(x)x

= q−nfn(x)xyn + q−(n−1)fn−1(x)xyn−1 · · ·+ q−1f1(x)xy + f0(x)x

The difference q−nxa− ax ∈ I, so

(q−n − q−(n−1))fn−1(x)xyn−1 · · ·+ (q−n − q−1)f1(x)xy + (q−n − 1)f0(x)x ∈ I.
By induction hypothesis, I must contain a unit.

Lemma 2.4. (xOq(k2))i(yOa(k))j = xiyjOq(k) for all i, j ≥ 0.

Proof. Let xiyj(
∑
f`(x)y`) ∈ xiyjOq(k2). Using the relation in Oq(k2), we get

xiyj(
∑

f`(x)y`) = xi(
∑

f ′`(x)y`)yj = (
∑

xif`(x)y`)yj ∈ (xOq(k2))i(yOq(k2))j .

On the other hand, consider

(x
∑
`1

f`1(x)y`1) · · · (x
∑
`i

f`i(x)y`i)(y
∑
m1

gm1
(x)ym1) · · · (y

∑
mj

gmj
(x)ymj ) ∈ (xOq(k2))i(yOq(k2))j .

Hence

(x
∑
`1

f`1(x)y`1) · · · (x
∑
`i

f`i(x)y`i)(y
∑
m1

gm1
(x)ym1) · · · (y

∑
mj

gmj
(x)ymj )

= (xi
∑
`1

qhf`1(x)y`1 · · ·
∑
`i

f`i(x)y`i)(yj
∑
m1

g′m1
(x)ym1 · · ·

∑
mj

g′mj
(x)ymj )

= (xiyj
∑
`1

qhf ′`1(x)y`1 · · ·
∑
`i

f ′`i(x)y`i
∑
m1

g′m1
(x)ym1 · · ·

∑
mj

g′mj
(x)ymj ) ∈ xiyjOq(k2).
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�

Let P be a prime ideal of Oq(k2). Since Oq((kx)2) = Oq(k2)[x−1, y−1] is simple,
P must contain a product xiyj ∈ P . This implies that xiyjOq(k2) ⊆ P . By the
last lemma, (xOq(k2))i(yOq(k2))j ⊆ P . Thus x ∈ P or y ∈ P because P is prime.
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