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COMPLEMENTARY NOTES TO THE BOOK “LECTURES ON
ALGEBRAIC QUANTUM GROUPS”*

MAURICIO MEDINA-BARCENAS

ABSTRACT.

1. HoPF ALGEBRAS

Let us fix a fiel k.
Given two vector spaces (over k) A anb B, we will denote by A ® B the tensor
product over k.

Definition 1.1. Let A and B be vector spaces. The twist map
T:A®B—=B®A
is the k-morphism sending 7(a ® b) = b ® a.

Definition 1.2. An algebra over k or a k-algebra is a vector space A equipped
with k-morphisms p: A® A— A and u : k— A called the multiplication and the
unit respectively, such that the following diagrams commute:

u®I A TAQu n@I A

EQA—= AR A<— AREk ARARA— AR A
~ i# - IA®M\L i#
A A®AH4>A

A is commutative if the following diagram commutes:

T

ARA—— S AR A
N A
A

Example 1.3. (i) k is a commutative k-algebra with multiplication p(a®b) =
ab and unit u(1) = 1.
(ii) k[x] the polynomial ring with coefficients in k.
(iii) M, (k) the n by n matrices with coefficients in k.
(iv) Tensor product of two algebras. Let (A, p,u) and (A’,p',u) be two k-
algebras. Then A® A’ is a k-algebera with the following multiplication and
unit:

BT A Ay (A oA — A

hg: (A AY® (AR A')
ug (1) = u(l) @ /(1)

*Written by K. Brown and K. Goodearl [1].
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Now, we can dualize the diagrams in the definition of k-algebraa and we get a
k-coalgebra:

Definition 1.4. A coalgebra over k or a k-coalgebra is a vector space C' together
k-morphisms A : C —C ® C and ¢ : C — k called the comultiplication and the
counit respectively, such that the following diagrams commute:

A

C cel C
Al J/IC®A e lA &
CRC——CCC ke C ceC C®k
AQIc e®lIc Ic®e
C is cocommutative if the following diagram commutes:
C
>

Sweedler’s Notation

For an element ¢ € C, we will write A(c) = > ¢; ® coa € C ® C where ¢; and ¢y
refer to variables elements of C|, not uniquely, determinated. The subscripts 1 and
2 indicate the position of these elements in the tensor product. With this notation
the coassociativity of A is expressed by:

(Io ® A)A(e) = (Ie @ A)(D_ e1 @ ¢2)
= a1 ®A(e)
=> 1 ® (c21 ® )
=> (n®c2)@cy
=Y Ale))® ey
(AIc)Ale) = (A 10)() a®c)

For the counit:
(@ Ic)A(e) = (e @ Ic)(D 1 @ ca)

= Z e(e1) ® ea
=1® Z g(e1)en
=1®c
This implies that,
(1.2) c= 26(81)02
Analogously,
(1.3) c= 2015(02)

The cocommutativity is equivalent to

(1.4) ZCl@CQZZCQ®Cl
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Example 1.5. (i) k is a coalgebra with comultiplication A(a) = 1 ® a and
counit € = Ij.
(ii) Let F' be a vector space with basis {f)}rea. Then there exist an unique
k-morphism A : FF— F ® F' such that A(fy) = fu ® fx for all A € A; and
a unique k-morphism ¢ : F'—k such that £(f)) = 1 for all A € A.
Coassociativity

(Ir @ A)A(f2) = Ur @A) (a @ fa) = A @A) = L ® fa® fa

(AR IF)A(fr) = (AR IR)(fr@ ) = A(f2) @ fa = L@ fr® fa

Counit For the counit we have

fa=1fx=¢e(fr)fa

(iii) Let G be a group. Consider the group ring k[G]. Then, we can give two
coalgebra’s structures to k[G] as follows: The first structure is given by last
example. That is, A(g) = ¢ ® g and €(g) = 1. For the other structure, let
e € G the unit of G. We define

A : k[G] —k[G] ® k[G]

as follows:

exe ifg=e
A(g)z{ g

gRe+e®g ifg#e

and counit,

as:

0 ifg#e

(iv) Consider the polynomial ring k[z]. We can give two coalgebra structures
to k[z]. The first is given by the example (ii), with the canonical basis
{1,z,2%, 23,...}. The second structure is as follows:

Comultiplication:

E(g):{l ifg=e

A klz] —k[z] ® k[z]

defined as
A =(z1+1®2)
Counit:
e klz] —k
defined as
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Let us check the coassociativity,

1A)A@E)=(10A)(z@1+1@2)

-1 ®A)ikj(xj ® 2'~7)

j=0
i
=Y ki(a? ® A(a'7))
j=0
i i—j
= ki(xj ® Z ag(x‘ ® xi—jfe))
j=0 £=0
i i—j
= kiag(z? @ 2* @ 2777F)
§=0 £=0

For some elements k;,a; € k. On the other hand,

(A DAGE) = (A1) (z®1+1R®1)

=(A® l)zz:kj(a:j ® ')

j=0
= ki(A@@)) @ a'7)
j=0
J

= Z kz(z ar(zt @ 2778 @ 217)
=0

£=0

Il
(-
>
S
=
S
~
&
8
S
~
&
&&
<
S~—

=1®
Analogously, (1 ®¢)A(z?) = 2° ® 1. Thus (k[z], A, €) is a coalgebra.
(v) Consider the matrix ring Mat, (k) with canonical basis {e;;}. Define
A : Mat, (k) — Mat,, (k) ® Mat,, (k)
as follows

Aley;) = Zeie & ey
¢

And
e : Mat, (k) —k
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as
eeij) = i
We will call this coalgebra the n x n matrix coalgebra over k£ and we will

denote it by Mat;, (k). We can identify this coalgebra with the ring of
polynomial functions on the space of n x n matrices over k

O(Mat, (k) = Xy | 1 <i,j < n]

sending €ij Xz_]

(vi) The tensor product of two coalgebras. Let (C, A, ¢) and (C’, A’,€") be two
coalgebras. Then the tensor product C ® C’ is a coalgebra with comulti-
plication and unit:

ARA IcRTRIcr
_—

Ag:C®C' CeCol e CoC oCec

51 CRC 2k
Convolution Product

Example 1.6. Consider any coalgebra (C,A,e). Let C* denote the dual of C
as vector space, that is C* = Homy(C, k). Then C* is a k-algebra with product
given by the transpose of A, that is, for f,g € C*, (f*xg)(c) =Y f(c1)g(c2) where

Ae) =31 ®ca.

Proposition 1.7. Let (A, u,u) be an k-algebra and let (C,A,¢e) be a k-coalgebra.
Then Homy (C, A) is a k-algebra with multiplication and unit as follows: Let f,g €
Homy (C, A)

* : Homy (C, A) ® Hom (C, A) — Homyg (C, A)

frg=nu(f®g9)A

The unit is given by the composition ue.
In the Sweedler’s notation

(f*9)(c) =) flen)y(

ue(c) =e(c)la
This product is called the convolution product.

Proof. Associativity.
fxgx=h)=p(f®(g*h)A

(fougeh)A)A
(Ta@p)(f@(geh)(lc®A)A
(L@ Ia)((f @ g) @ h)(A®Ic))A
(u(f®g)@h)(A®Ic))A
u(f ®g)A®h)A
=(f*xg)xh

"
"
1
1
1



6 MAURICIO MEDINA-BARCENAS

Now, let us check that ue is the unit.
(f xue) Z fler)ue(er)
= Z fler)e(e2)la
= Zf 816 62
= cieler))
= f(o)
Last equality follows from (1.2). Analogously, ue * f = f. O

The dual of Proposition fails since V' is an infinite dimensional vector space,
V* ® V* is a proper subespace of (V' ® V)*, so that the dual of the multiplication
map on an infinite dimensional algebra A need not take all values in A* ® A*.

Definition 1.8. Let A be a k-algebra. The finite dual of Hopf dual of A is the set
A° ={f e A" | f(I) =0 for some ideal I of A with dim(A/I) < oo}

Proposition 1.9. Let (A, u,u) be a k-algebra. Then A° is a coalgebra with comul-
tiplication A = p* and counit € = u*.

Definition 1.10. Let (A, pu,u) and (A’,/,u’) be two algebras. A k-morphism
f: A—= A’ is an algebra morphism if the following diagrams commute:

AgA —" -4 k u A
ref I \ /
AR A Al Al

Definition 1.11. Let (C,A,¢) and (C’, A’,¢’) be two coalgebras. A k-morphism
f: C—=C(C"is a coalgebra morphism if the following diagrams commute:

C f

S

cCeC '’

Definition 1.12. Let (C, A, g) be a coalgebra. A subspace I of C is a coideal if
AI)CCRI+I®Cande(l)=0.
Proposition 1.13. Let I be a coideal of a coalgebra (C,A,€). Then

(a) C/I is a coalgebra.
(b) The canonical projection w : C— C/I is a coalgebra morphism.

Proof. (a) Consider r@7m : CC—C/I®C/I. Then Ker(r®n) =C@I+I®C.
This implies that
ceC c _C

CRI+I®C =797
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Hence the comultiplication A¢,/; on C/I is induced by the following diagram:

0 I C u C/I 0
I
All A | 3Acyr1
Y
0 CRI+I®C Coc—"2". Cc/IeC/I 0

The counit is the map induced by ¢,

c : k

o/

For the coassociativity, we have to see that front face of the next cube commutes:

C CeC
/ o
c/1 C/Te )T
Doy
Ic®A
A Ic/1®Ac)r
Acyr
CxC Nolo CrCeC
TR TRTRT
C/1eC)I C/T&ClIéC)T
Ac/1®Icyr

The back face is the coassociativity of A. Notice that by the definition of Ac/y
the top, bottom, right and left faces commute. Hence

(Ic/1 ® Acyr)Acyrm = (Ieyr @ Agyr)(m @ m)A
=(rr7m)(lc®A)
= (Ag/r @ I)(r@m)A
= (A¢g/r @ Ie/r)Acyrm
Since 7 is surjective, (Ic/r ® Ac/r)Ac/r = (Acyr @ loyr)Acyr-

It is left to the reader to see that ¢/ is a counit.
(b) 1t is clear for the construction of Ag);.

Definition 1.14. A k-Bialgebra is a k-vector space B equipped with linear maps
Wy uy, Aje such that (B, p,u) is a k-algebra, (B, A,¢) is a k-coalgebra and either:

e A and ¢ are algebra morphisms, or
e 1 and u are coalgebra morphisms.



8 MAURICIO MEDINA-BARCENAS

In fact, these two last conditions are equivalent. For, suppose A and ¢ are algebra
morphisms. Consider the following diagram,

B® B -

A®Al

(B®B)® (B®B) A

B

IpRTRIp

BRBRBRB—B®B
HRup

If we recall the tensor algebra (Example iv)) and the tensor coalgebra (Ex-
ample vi)) then we can see that if A is an algebra morphism then the diagram
commutes. And, if € is an algebra morphism then the following diagram commutes

m

B®B B

Qe €

k@k——>k

Thus p is a coalgebra morphism. To see that w is a coalgebra morphism, since
€ is an algebra morphism then eu = [ and since A is an algebra morphism this

diagram
k “ B

B®B

commutes. So u is a coalgebra morphism. The other implication follows with the
same diagrams.

Example 1.15. (i) Consider the coalgebra k[G] with comultiplication A(g) =
g ® g and counit ¢(g) = 1 (Example [L.5(iii)). Then k[G] is a bialgebra. Let
see that A is an algebra morphism.

te(A®A)(geh)=(peop)IeTeI)(A®A)(g®h)
=penIeoTe(grgeh®h)
=pR@ugeheg®h)
=gh® gh
= A(gh)
=Au(g®h)
And
Au(l) = A(1)
—1®1
= ug(1)

Thus, A is an algebra morphism. It is clear that ¢ is an algebra morphism.
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(ii) Cousider the coalgebra O(Mat,,(k)) presented in Example v) and con-
sider the isomorphism

O(Mat, (k) ® O(Maty (k) ——= O(Mat,, (k) x Mat,, (k)

where o(f®g)(a,b) = f(a)g(b). Let m : Mat,, (k) xMat,, (k)—=Mat,, (k) de-
note the multiplication of matrices. Then the comultiplication in O(Mat,, (k))
is given by A(f) = ¢~ 1(fm). Given f,g € O(Mat,,(k)) denote the product
of polynomials as f - g. Then

A(f-g) =7 ((f - g)m) = ¢ (fm - gm) = o~ (fm)p(gm) = A(fm)A(gm).

It is clear that A(1) = 1®1. Hence A is an algebra morphism. On the other
hand, the counit of this coalgebra is e(f) = f(I,) where I, is de identity
matrix, so itis clear that ¢ is an algebra morphism. Thus O(Mat, (k)) is a
bialgebra.
(iii) The quantum plane
Oy(k?) = k(z,y | 2y = qya)

We have that O,(k?) = k[z]ly;7] (an skew polynomial ring) where 7 :

k[x] — k[z] is the automorphism given by 7(f(z)) = f(¢ 'z) and so

{x'y? | 4,5 > 0} is a basis for this algebra. O4(k?) is a bialgebra with
comultiplication given by

Alz) =z
Aly)=y®1+1®y
and counit
e(z) =1
e(y) =0

Since O, (k?) is a free algebra, A and ¢ define algebra morphisms. What
we have to check is that (O4(k?),A,¢) is a coalgebra. By construction
A(z'y?) = pg(A(r)* @ A(y)’?) where pg is the multiplicationin the tensor
algebra. For the coassociativity,

(A2 DA@EY) = (A2 us(A() @ A(yY) = pe (A DA(') @ (A 1)A(Y)).
By Example iv), this is equal to
e (1 A)A(') @ (1o A)AY)) = (10 Aue(A@) @ Aly)) = (1@ A)A(z'y).
Hence A is coassociative. Now, also using Example iv),
(@ DA('Y) = (e @ Nug(A(r') @ A(Y)) = pe((e @ DA(") @ (e ® 1)A(Y))
=pep((l@a) e (1ey)) =1y,
Thus (O4(k?), A, ) is a coalgebra and so O, (k?) is a bialgebra.

Definition 1.16. Let B be a bialgebra. A subspace I of B is a biideal if I is both,
an ideal and a coideal.
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Example 1.17. Consider the bialgebra O(Mat, (k)) (Example [1.15(ii)). Let D €
O(Mat,, (k)) be the determinant function. Then e(D) = 1 and A(D) = D® D. For,
consider the isomorphism

O(Mat,, (k) ® O(Mat, (k) ——> O(Mat,, (k) x Mat, (k) -

Since D commutes with products, A(D) = ¢~*(Dm) and D ® D have the same
image under the isomorphism ¢. Therefore, A(D) = D ® D. Let (D — 1) be the
ideal generated by D — 1. We have that

AD-1)=D-1)®(D—-1) C(D-1)® OMat,(k)) + O(Mat, (k) ® (D — 1) .
Ande(D—-1)=D(I,) —1=1—1=0. Thus (D — 1) is a biideal of O(Mat,(k)).

Definition 1.18. Let B and B’ be two bialgebras. A k-morphism f : B— B’
is a morphism of bialgebras if f is both, an algebra morphism and a coalgebra
morphism.

Proposition 1.19. Let (B, p,u, A, €) be a bialgebra. Then € induces a left (right)
B-module structure on k. This module will be denoted by -k (k.).

Proof. Let b € B and « € k. Define a.b = e(b)a. Since ¢ is an algebra morphism,
k is B-module. (]

The comultiplication in a bialgebra (B, p,u, A, ) allows tensor products of B-
modules to be made into B-modules. Suppose V and W are left B-modules and
view the module multiplication as algebra homomorphism my : B — Endg(V)
and my : B— Endy(W). Then there is an algebra homomorphism

A

my @mw

B

B®B End, (V) ® Endy (W) End,(V @ W),

which turns V@ W into a left B-module. The formula for the module multiplication
isb(v @ w) = b1v ® bow where A(b) = > by ® bs.

Definition 1.20. A bialgebra (H, u,u, A, €) is a Hopf algebra if there exists a linear
map S : H— H such that

Sxlg=ue=1Igx5,

that is, S is the inverse of the identity Iy in the convolution product. S is called
the antipode of H.

By the definition we can see that

(1.5) (S Ii)(h) =Y S(h1)ha = e(h)1n
and
(1.6) (I S)(h) =Y h1S(hy) = (h)1n

Definition 1.21. Let H and G be two Hopf algebras. A k-morphism f: H —G
is a morphism of Hopf algebras if f is both, an algebra and a coalgebra morphism
such that fSy = Sqaf.

Definition 1.22. An ideal I of H is a Hopf ideal if I is a coideal and S(I) C I.

Let I be a Hopf ideal of a Hopf algebra H. Since I is a coideal then H/I is a
bialgebra. Moreover, since S(I) C I, pass to S/I. Hence S/I is a Hopf algebra.
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Remark 1.23. If f: H— G is a morphism of Hopf algebras then Ker f is a Hopf
ideal. For, since f is a coalgebra morphism Ker f is a coideal. Now, f(Sg)(Ker f) =
Sa(f(Ker f)) = 0. Thus, Sy(Ker f) C Ker f. Taking the canonical projection,
every Hopf ideal is a kernel.

Example 1.24. (i) Let H = k[z,27']. We know that H is an algebra. By
Example (ii) H is a coalgebra with comultiplication A(z?) = 2’ @ !
and counit e(x?) = 1 for all i € Z. Let us see that u and u are morphism of
coalgebras. That is, we have to see that the following diagrams commute

m

HoH H
Ag A

H®H a H
k
and
k ¢ H
o A
k ¢ H
\ /
k
So,
(h®pAg(r' @a?) = (nep)(' @2’ @' @)
:xixj@)xixj
= A(z'z?)
= Ap(a’ @ 27)
and

epu(z®x?) = e(x'2?)
=1
=eg(z' @ 2%)

Thus, p is an coalgebra morphism.
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Now, for wu,

Au(l) = A(ly)
=1lg®1lg
= (u®u)(1)

and

eu(l) =e(lpy)
=1

Thus, u is a coalgebra morphism. Hence, H is a bialgebra. Define § :
H—=H as S(z*) = 271. Then

(S*Ig)(z') = S(a")r' = 2" = 1g = ue(a?)

(Ig x S)(z") = 2'S(2") = 2'o™ = 1y = ue(z?)
Thus H is a Hopf algebra.
The bialgebra k[G] with comultiplication A(g) = g® g and counit e(g) = 1,
is a Hopf algebra with antipode S : k[G] —= k[G] defined by S(g) = g~ .
For instance, the simplest infinite noncommutative example is the group
algebra over k of the infinite dihedral group

G={(a,z|zar=0a", 2°=1).
In this case k[G] is the k-algebra generated by a,a ™!
relations and aa=! =1 = a~la.
Let (G,e) be a group. Then F(G) = {f : G—k} is an algebra with the
point-wise multiplication. Moreover F(G) is a Hopf algebra, the counit and

the antipode are defined as

,x subject to the above

S(f)lg) = fg™")
Note that (G x G) = F(G) ® F(G) as k-algebras, this isomorphism sends
f1 ® fa to the function defined by (g, h) — f1(g)f2(h). The comultiplica-
tion is given by
A F(G) 5 F(G x G) —= F(G) @ F(G) .
By Example [L.15(ii), O(Mat,, (k)) is a bialgebra. Consider the factor bial-
gebra given by the biideal (D — 1) (Example [L.17).
O(Sln (k) = O(Maty (k))/ (D —1).

Recall that if A is a matrix with nonzero determinant, the inverse of
A can be computed as A~1 = D(lA) adj(A), where adj(A) is the matrix of
cofactors.

Define S : O(Sl,(k)) — O(Sl,(k)) as SX;; the ij-entry of (X;;)~!
(modulo D — 1). Then,

1 ifi=j
S x I S( X)Xy = = e(Xy;)1.
(S * Tosta k) Z 1) Xiej = {o otherwise — & Xis)
Thus, S is an antlpode and so O(Sl,,(k)) is a Hopf algebra. In particular
O(Sly(k)) = Kla,b,c,d | ad — be = 1] where we have written a for Xiq, b
for X715 and so on. Hence,
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‘ a b c d
AlaRa+bQc|a®@b+bRd|cRa+dRc|cRb+d®d
€ 1 0 0 1
S d —b —c a.

(v) Consider the ring of fractions of O(Mat, (k)):
O(GLn(k)) = O(Mat, (k))[D~].

So, a canonical element in O(GL,,(k)) has the form % with f € O(Mat,,(k))
and n > 0. Let ¢ : O(Mat,,(k)) — O(GL,(k)) be the localization mor-
phism. Note that (¢ ® ¢)A(D) = £ ® . Hence (¢ ® ¢)A(D) is invertible
in O(GL,(k)) ® O(GLy(k)). Thus, there exists a unique algebra mor-
phism Ap : O(GL,(k)) — O(GL,(k)) @ O(GL,(k)). We can see that
AD(%) =3 % ® 52” where A(f) = > f1 ® fo. On the other hand. since
g(D) = 1, there exists a unique algebra morphism ep : O(GL,(k)) —k
such that 8(%) = f(I,,). Tt is not difficult to see that (O(GL,(k)), Ap,ep)
is a bialgebra. Moreover, O(GL,(k)) is a Hopf algebra where the antipode
can be defined as in the previous example.

(vi) Let g be a Lie algebra and let U(g) its universal enveloping algebra. The
universal enveloping algebra U(g) is the quotient of the tensor algebra
T(g) = D,,509°" by the two sided ideal generated by the elements z ®y —
y®@x — [x,y] for all 2,y € g. The Poicaré-Birkhoff-Witt Theorem [5] asserts
that if {x;} is any basis for g, where the index set [ is totally ordered, the
set of monomials {x;, x;, ---x;, } where k > 1 and i3 < iy < -+ < i, is a
basis for U(g). The composition of the natural maps g—=T(g) —U(g) is
an embedding. Hence we can identify g with its image in U(g). To define an
algebra morphism from U(g), it is enough to define it in g, since g generates
T(g) as algebra and check that the morphism pass to the factor algebra.
We define the following morphisms:

Ax)=2z1+1®x
e(z) =0,
for z € g. Let us see that these algebra morphisms pass to U(g).

Azy —yz) = Az)Ay) — A(y)A(z)
=@1+12)(y01+10y) - Ye1+1ey)(z1+1x)
=(zy@l+zy+tyRr+1lay) — (y21l+yRr+zy+1Qyx)
= (zy —yzr) @1+ 1@ (2y - yz)
= [z y©l+1®[z,y]
= A([z, y])

Hence A defines an algebra morphism from U(g) —U(g) @ U(g). Tt is
clear that € : U(g) —= k is an algebra homomorphism. Now, define S :
T(g) —U(g)°? by the rule

S(z) = —=.
Then, S is an anti-homomorphism S : T'(g) —U(g). Hence,
S(zy—ye) = S(ey) - S(yz) = S(4)S(@)—S(2)S(y) = yr—zy = —[z,3] = S([z. ).
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Hence, S : U(g) —U(g). Moreover, for any = € g
(S * Iyg))(xz) = S@) 1+ S(1)r = —x +2 =0 = ue(x)
Analogously,
(Tugy * S)(xz) = 2S(1) +18(z) =2 — 2 = 0 = ue(w)
Let y € g and x € U(g), then:

(S * Ty(g))(xy) = u(S @ Iyg)) Alxy)

I
T E

(g
S® lug)

[
nn
®
£

|
=

)
)
)
)
)
)
(9))

|
=

5(331y 2+ Y S(x1)way
S(y)S(z1)z2 + 25(371)3329

(Y)(S * Lyy(g)) () + (S * Ly (g)) ()Y
= —y(S * Ly (g)) () + (S * Ly (g)) ()Y

I
™

I
(Q

In particular, if z,y € g, then (S * Iy(g))(zy) = 0. Therefore, by induc-

tion (S * Iyy(g)) (@i, iy - -~ 4,) = 0 for every monoid. Analogously (I(q) *

S)(@i, iy -+ - x4,,) = 0. Thus S is an antipode, and so U(g) is a Hopf algebra.
Consider g = sly(k), with k-basis,

e=(34) f=08) h=(%).
Then U(g) is the k-algebra with generators e, f and h and relations
he —eh=2e¢ hf—fh=-2f ef—fe=h

Proposition 1.25. Let (H, p,u,A,e,S) be a Hopf algebra.

(1) S(gh) = S(h)S(g) and S(1) = 1.
(2) If H is either commutative or co-commutative then S* = Ip.

Proof. 1. We have that H ® H is a coalgebra, then Homy(H ® H, H) is an algebra.
Let m, p € Homy(H ® H, H) as follows:

m(g @ h) = S(h)S(g)

p(g ® h) = S(gh)
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We claim that p* yu = p*m = ueg.

pxu(g®h)=p(p®p)Ag(g®h)
=S ®@Ig)(p®pAe(g®h)
A is an alg. morph. = u(S® Ig)Au(g® h)
=u(S®Ix)A(gh)

)
)
:/L(S®IH)(Z( h)1 @ (gh)2)
—ZS gh)l

By (L.5) = e(gh)1u
=ueg(g®h)
On the other hand,
prm(g®h) = p(p®@m)Ag(g® h)
wp®p)(Inen ® (S©9)(Inen ®T)(D_ g1 ©h1 @ g2 @ ho)
plp @ p)(Iggr @ (S ® 5))(291 ®@ h1 ® ha ® g2)

= p(p® ,u)(Zg1 ® hy ® S(h2) ® S(g2))

= Zg1h15(h2)5(92)
By (L.6) = 2915
By (L.6) =<(g 1H

= UE@(Q ®h)

Hence p and m are inverses of p in the convolution product. Thus, p = m. Now,
we have that S % Iy = ue, hence

lg=e(lyg)lg =ue(ly) = (S*xIg)(1g) =SAy)lg = S(1g)
2. Suppose H is commutative. Then,
(S %5%)(9) = u(S ® S*)A(g)

= (S5 91 ®g0)
= Z 5(91)5%(g2
=50 S(92)91)

H is commutative = S(Z 915(g2))
= S(e(9))
=¢(9)S(lm)
=e(9)lu
= ue(g)

Analogously, 5% * S = ue. Hence S? is an inverse of S in the convolution product.
Thus 5% = Iy. O

References: [1], [2], 3], [4]-
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2. MARGIN NOTES AND EXERCISES
Pag. 5, Eq (3).

In the ring Mat,, (k) we have additional structure given by the multiplication of
row or column vectors by matrices. These give morphisms

R : k™ x Mat, (k) — k™ and C : Mat, (k) x k" — k™.
Hence R and C' induces algebra homomorphisms in the coordinate rings:
O(k™) — O(k" x Mat,(k)) =2 O(k") @ O(Mat,,(k))
and
O(k™) — O(Mat, (k) x k™) =2 O(Mat, (k)) ® O(k™)
given by precompose R and C respectively. Let us check what the first morphism

is doing. Consider the coordinate function z; € O(k™) and let (aq,...,a,) € k™ and
(b”) S Matn(k). Then

ij((al, ceey an), (b,j)) = IJ(Z a,;bﬂ, ceey Z albm) = Z aibi]‘.
=1 =1 =1
This implies that

i=1
Analogously,

=1
which are equations (3) injll7 Pp. 5].
Example 1.1.6 and Exercise 1.1.C

We want to quantize SI,,(k) (Example iv)) but first we have to quantize
Mat,, (k) (Example [1.15((ii)). For, we need a bialgebra (B, u,u, A, €), generated as
k-algebra by elements X;; satisfying:

A(Xiy) =Y Xie® Xy

=1

and
e(Xij) = i3
which supports k-algebra homomorphisms
R:Oy(k")—0O4(k")® B and C: Og4(k")— B ® O4(k")
satisfying:
T > Z;vz ® X;; and x; — ZXU ® x;.
i=1 j=1
where Oy (k™) = k (1, ..., xy | z;x; = qzjz; for i < j) the quantum affine n-space.
For convenience, let us check the case n = 2. Consider p; : O4(k™) —k defined

as p;(x;) = §;; for i = 1,2. It is clear that p; is a k-algebra homomorphism for all
1 <4 < n. Then we have the compositions

(pi®@ )R : O,(k*) — B
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and
(1® p;)C : Oy(k*) — B.
Note that (p; ® 1)R(z;) = X;; and (1 ® p;)C(z;) = X;;. Hence,

X1 Xor = (1@ pe)C(z122) = (1® pr)Clqrazy) = X200 X 10

2.1
21) XnXex = (pr ® 1)R(z122) = (pe @ 1)R(gaz1) = ¢ X2 X1

for/ =1,2.
On the other hand,

C(r1r2) = (X11 ® 21 + X120 @ 22)(X21 @ 21 + Xoo @ 22)
= X11X21 ® 27 + X12X01 ® 2221 + X11 X022 @ 3122 + X12X20 ® 73
= X11X21 ® 27 + (7' X12Xo1 + X11X02) ® 2122 + X12X20 ® 73
qC(wax1) = q(Xo1 @ 1 + Xoo @ 2)(X11 @ 21 + X120 ® 2)
= ¢X21X11 ® 27 4 ¢X22X11 ® 2221 + ¢ X021 X12 ® 1122 + ¢ X220 X12 © 75
= X11X21 ® 27 + (X220 X11 + ¢X21 X12) ® 122 + X12X02 ® 75

Then (q71X12X21 + X11X22) — (X22X11 + qX21X12) &® L1Lg = 0 Analogously,
using R we have 119 ® (q_1X21X12 + X11X22) - (X22X11 + qX12X21) =0.

Remark 2.1. Let V and W be k-vector spaces. Take 0 # w &€ W then the k-
morphism (w ® ) : V—W ® V is injective.

By the Remark we have that
(22)  X11Xoo — X0oX11 = ¢ X1 X12 — ¢ ' X12X01 = ¢X12X01 — ¢ ' X1 X1o.
Now, suppose ¢? # —1. Then multiplying equation by q we get
¢ X21X12 — X12X21 = ¢*X12X01 — X201 X12

and so
—¢*(X12X21 — X21X12) = X12Xo1 — Xo1 X120

It implies that

(2.3) X12X91 = Xo01 X12
Therefore
(2.4) X11 X029 — X020 X11 = ¢X01 X12 — ¢ ' X12X01 = (¢ — ¢ 1) X12X21

Exercise 1.1.D

Let B the k-algebra given by generators X1, X192, Xo1, X2o and the relations
2.2|2.3] and Let us see that the k-algebra morphism

Ak (X1, X192, X01,X00) —B®B
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defined in generators as A(X;;) = X;1 ® X1, + Xi2 ® X; respects the relations in
B.

A(XnXe) = (X1 @ X11 + Xoo ® Xo1) (X1 @ Xi12 + X2 @ Xo2)
= X7 ® X11X12 + Xeo X1 @ Xo1 X2 + Xo1Xeo ® X11Xo0 + X5 @ Xo1 X9
Using 2] = X7 ® X12X11 + X2 X1 © Xo1 X12 4+ ¢ X2 X1 © X11 X092 + X7y ® X200 X21
= X7 @ X12X11 + Xeo X1 @ (Xo1 X192 + ¢X11X02) + X7 @ Xoo Xy
On the other hand

qA(XpXn) = q[(Xe ® X1z + Xe2 @ Xo2)(Xe1 @ X114+ X2 @ Xo1))]
=4q [ 7 ®X12X11 + Xep Xt ® XoaX11 + X1 Xeo ® X12Xo01 + X © X22X21]
Using )= ¢ [ X7 ® X12X11 + X2 X1 © X200 X11 4 X2 X1 © X12Xo1 + Xy @ X202 X1 ]
=4q [Xel ® X12X11 + X2 X1 ® (Xo2X11 + ¢ X12X21) + ng & X22X21]
Using 2.2 = ¢ [ X7 © X12X11 + X2 X1 ® (X11X22 + ¢ X1 X12) + X7p @ Xop X1 |

Thus A(Xang) = qA(XgQXgl) for ¢ = 1, 2.

A(X11X22) = (X11 @ X11 + X2 ® X21)(X21 @ X12 + X2 ® Xo9)
= X11X01 ® X11 X712 + X12X01 @ X21 X192 + X711 X902 ® X11 X022 + X12X00 ® X1 X020

Using 2.1] = ¢° Xo1 X11 ® X12X11 + X12X21 ® Xo1 X12 + X171 Xa0 @ X11 X0 + ¢* X020 X 19 @ X2 X0

A(X22X11) = (Xo1 @ X12 + X290 ® X02)(X11 @ X11 + X12 ® Xo1)
= X01X11 @ X12X11 + X201 X12 @ X12Xo91 + Xop X117 @ Xoo X1 + Xop X5 @ X9 X0y

gA(X21X12) = ¢(X21 ® X11 + Xo2 ® Xo91)(X11 ® X192 + X12 ® Xa2)
=q[X21X11 ® X11X12 + X22X11 @ Xo1 X712 + X201 X12 ® X171 X022 + X22X12 @ Xo1 X0

¢ A(X12X01) = ¢ (X1 @ Xi2 + X12 ® Xo9)(Xo1 @ Xq1 + Xoo @ Xo1)
q ! [(X11X21 @ X12X 11 + X 11 X020 @ X12Xo1 + X12X01 @ X0 X11 + X12 X090 ® X0 X5]
Using 2.0 = ¢ [X21X11 ® X11X12 + X11 X022 ® X12X01 + X12X01 @ X220 X11 + X220 X12 ® X1 X02)

In this way, the other relations can be checked. The k-algebra morphism
€ k(Xu1, X12, Xo1, Xog) —k

defined in generators as A(X;;) = J;; respects the relations in B. If fact, € sends
all the relations in B to zero. Hence, we have a bialgebra denoted O,(Maty(k))
called the quantum 2 x 2 matriz algebra. Now let us see that the maps

R:0,(k*)—0,(k*)® B and C:O,(k*)—=B® 0,(k?)
given by:

;=21 ®X1j+$2®X2j and Z’ii—>Xi1®£E1+Xi2 ® xa,
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are well defined, that is, R(x122) = R(qxsz1) and C(z122) = C(qrexy).

R(z172) = (21 ® X11 + 22 ® Xo1)(21 ® X12 + 72 ® X22)
=22 @ X11 X12 + 22w @ Xo1 X192 + 2120 @ X11 X209 + 23 @ Xo1 Xoo
Using 2.1] = qx% ® X12X11 + 221 @ X1 X12 + qrar1 @ X11 X902 + qrc% ® Xo2X01
= q73 @ X12X11 + 7271 @ (Xo1 X12 + ¢X11 X02) + ¢35 @ Xo9 X0y
Using 2.2 = qa7 ® X12X11 + 2221 ® (¢° X12X01 + ¢X22X11) + q25 @ X2 Xoy
On the other hand
qR(7271) = (21 ® X12 + T2 @ Xo2) (71 ® X11 + 22 @ Xo1)
q 27 ® X12X11 4 2221 ® Xoo X1 + 2122 ® X12X01 + 23 @ X290 Xo1]
q [ZE% ® X12X11 4 2221 ® X202 X11 + q2221 ® X12X01 + 23 ® X22X21]
q[27 ® X12X11 + 2221 ® (X220 X11 + qX12X01) + 235 ® X2 Xo1 ]

Thus R(z122) = R(qzexy). Analogously, C(z122) = C(qraz1).
Exercise I.1.E

It can be seen that in last exercise, all computations were made using equations
2.3 and 2:2] Hence, we have a bialgebra B satisfying equations 2.1 and 2:2] Now,
consider the ordered monomials X7, X, X3 X3, in B. From equation [2.2] we get
that Xo1 X12 = ¢2X19X01 + ¢X11X22 + ¢X22X11. This implies that the monomials
X1 X1 X5, X3, generate Xo1 X719 if and only if they generate XooX11.

Pag. 6, Example 1.1.8

The exterior algebra A(V) of a vector space V over a field k is defined as the
quotient algebra of the tensor algebra 7 (V) by the two-sided ideal (z ® x) with
x €V, that is

AV)=T(V)/{z®x).

The coset of an element 1 @ 2 @ - - - ® x,, is denoted as x1 Axa A --- A x,. Note
that if the dimension of V' is n, any coset x1 A xo A« -+ A xy with £ > n is zero. Let
us consider A(k?).

If {x1, 72} is a basis of k2, there is a k-linear map

k? —= O(Maty (k) @ A(k?)
given by

21— X11 @21 + X2 ® 22

To— Xo1 @1 + Xoo @ 9

By the universal property of 7 (k?) there exists a unique k-algebra homomorphism
T (k*) — O(Mata(k)) @ A(K?).

Let us see that this mapping factors through the tensor algebra.
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(2.5)
21 @21 —>(X11 @21 + X2 @ 22)(X11 @ 21 + X12 ® 22)

=X} @r1 Az + X1 X12 @21 Awg + X12X11 @2 Aay + X7 @@ A g
= X1 X@x ANwo — X1 X12®@ 1 A2
=0.
71 @ o —(X11 @21 + X12 ® 22)(Xo1 @ 21 + X2 ® 22)
=X11Xo1 ®w1 Awy + X11 X922 @21 Axa + X12X01 @ w2 Ax1 + X102 X022 @ 12 Ao
= X11 X202 — X12X01 ® 71 A2
o ®@ 1 —(X21 @ 21 + X2z ® 22)(X11 ® 21 + X12 @ 22)
=X X11 @21 Awp + Xoo X1 @@ Ay + X1 X2 @ 21 A wa + X902 X12 @2 A 22
= —(X11 X2 — X12X01) @21 A 22

Analogously, 7o ® xo — 0. Hence x ® z — 0 for all z € k2. Therefore, there is a
k-algebra homomorphism

A(K?) —= O(Mats(k)) @ A(k)
sending
1 N\ Ty —> det(Xij) X x1 N\ 2o.

Exercise 1.1.F

The quantum exterior algebra Aq(kQ) is defined to be the k-algebra given by
generators £; and & and relations

(2.6) G =0=¢ and &4 = —¢6i.
Consider the map ¢ : k (&1, &) —= Oy (Matz(k)) ® Ay(k?) given by
P(61) = X11 @& + X112 ® & and ¢(&2) = Xo1 ® &1 + Xoo @ &o.
Then,
?(61&)=(X11® &+ X120 6)(X11 Q& + X12 ® &)
= X7, @& + X12X11 ® &8 + X1 X12®E & + X @&
= (—qX12X11 + X11X12) ® §162
Using 2.1]=0

Analogously, ¢(£2) = 0.

#(€261) = (X21 @&+ Xo2 ® ) (X111 @ &1 + X12 ® &2)

= X1 X11 ® & + X220 X11 © 61 + X1 X12 © 16 + X2 X12 ® &
By 2.6 = (X21X12 — ¢X22X11) ® &162
By 22 = (¢° X12X21 — ¢X11X22) ® &16o.

On the other hand,
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—qd(6162) = —q(X11 ® & + X12 ® &) (X1 ® €1 + Xop ® &)
= —q [X11X21 ® & + X12X01 ® £261 + X11 X022 ® §1&2 + X12X0n ® &3
By 2.6 = —q(X11X22 — ¢X12X21) ® £&1&2
= (¢°X12X91 — ¢X11X22) ® &1
Thus, we have a k-algebra homomorphism
¢ 1 Ag(k?) —= Oy (Mata(k)) @ Ag(k?).
Note that
#(€182) = (X11 X2 — ¢X12X21) ® &1a.
Exercise 1.1.G
Now, consider the element D, = X11X22 — ¢X12X01 € O,(Mata(k)). We claim
that D, is in the centre of O,(Mats(k)).
Dy X11 = (X11X22 — ¢ X12X51) X1y
= X11X22X11 — ¢X12X01 X1
= X11X02X11 — ¢X12(q7 " X11X01)
= X11 X220 X711 — X12X11 X0y
= X11X22X11 — ¢ ' X1 X12X01
= X11(X22X11 — ¢ ' X12X01)
By [2.2]= X11(X11X22 — ¢X21X12)
By 23]= X11(X11X22 — ¢X12X21)
=XnuD,

Dy X2 = (X11 X922 — ¢X12X21) X 12
= X11 X220 X192 — ¢X12X21 X12
= X11(q " X12X22) — ¢X12 X1 X12
= X12X11 X292 — qX12 X021 X120
= Xi2(X11 X202 — ¢ X21X12)
= Xi12(X11 X202 — ¢X12X21)
= X12D,

In the same way, it can be seen that D, commutes with all the generators. Thus
D, is a central element. Therefore, we can define

O4(Sl3(k)) = O(Matz(k))/ (Dg — 1)
Exercise 1.1.H

Let see that the comultiplication A and the counit € in O4(Mats(k)) induce a
multiplication and a counit in O, (Sl (k)). For, consider A : Oy (Maty(k))—0,4(Sl2(k))®
O4(Sly(k)) given by

A(Xl]) = Xil X le + X»L'Q ®X2j.
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Then,

A(X11)A(X22) = (X11 ® X11 + X2 ® Xo1)(Xo1 @ X2 + Xoo ® Xo9)
= X11 X021 ® X11X12 + X12X91 @ Xo1 X120 + X11 X022 @ X11 X929 + X12X00 ® X1 X2
qA(X12)A(X21) = q(X11 ® X12 + X12 ® X22)(Xo1 ® X171 + Xo2 ® Xo1)
= q[X11X21 ® X12X11 + X12X21 ® X2 X171 + X11 X090 ® X192 X091 + X12X90 @ X2 Xo1]
= X11X21 ® qX12 X711 + X12X21 ® ¢X22 X711 + X11 X022 ® ¢X12 X071 + X12X22 ® ¢ X292 X0y

Hence
A(Dy) = A(X11X22 — qX12X01)
= X12X01 ® (X21X12 — ¢X22X11) + X11 X020 ® (X711 X022 — ¢X12X01)
= X15X91 ® (¢°X12X01 — ¢X11X22) + X11 X0 ® 1
= —qX12X21 ® (X11X22 — qX12X01) + X11 X2 ® 1
= X11 X922 —qX12X21 ®1
=1®1

Thus A(Dy; — 1) = 0 and so, we have a k-algebra homomorphism
A Oy(Sla(k)) —= 04 (Sla(k)) ® Og(Sla(k)).
Recall that the counit e : Oy(Maty(k)) — k is given by €(X;;) = d;;. Then,
€(Dq) = €(X11X22 - qX12X21) = €(X11X22) - €(qX12X21) =1.
Thus e(D, — 1) = 0, and so, we have a k-algebra homomorphism
€:04(Sla(k)) — k.

This implies that (O, (Sl2(k)), A, €) is a bialgebra.

Given an algebra A, the opposite algebra A°P is the algebra such that as k-vector
space is equal to A and the product is given by a - b = ba € A.

Consider the following map S : k(X11, X12, Xo1, Xo2) — Oy (Sl2(k))°P defined

in generators as

S(X11) = Xoo S(X12) = —q¢ ' X1
S(Xa21) = —qXa1 S(Xa2) = X11.

We have to check that this k-algebra homomorphism can be defined from O, (S1,(k)),
that is, we have to check that S respects the relations and S(D,) = 1.

S(X12X92) = S(X22)S(X12)
=—q¢ "X11 X1z
= —X12X11
= S(qX22X12).
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S(X12X21) = 5(X21)S(X12)
= (—¢X21)(—q¢" ' X12)
= X1 X12
= X12X01
= (—¢ ' X12)(—gX2)
= 5(X21X12)

S(X11 X902 — X2 X11) = S(X11X22) — S(X22X11)
= X11 X2 — Xo2X11
=(¢—q ") X12X
=(q—q ")S(X12X21).

S(Dq) = S(X11X22 - qX12X21)
= X11 X922 — X12X01
=1
Hence we have an anti-automorphism
S+ 04(Sla(k)) —= Oy (1, (k).
Now, note that
(id* S)(X11) = X115(X11) + X125(X21)
= X11X92 — qX12X1
=1
= ue(X11)

(id * S)(Xlg) = XnS(Xu) + X125(X22)
=—¢ ' X1 X12+ X12 X1y
=0
= ue(X12)

Thus, (O4(Sl2(k)), A, e,5) is a Hopf algebra.
Exercise 1.1.1
Exercise 1.1.J
Consider the quantum plane
Oq(k;2) =k (x1,22)/ <x2x1 — q_1x1x2>.
Hence, the reduction system is just

{(zox1, ¢ tay20)}.

That implies that there are no inclusion ambiguities and overlap ambiguities.
Note that the irreducible monomials are 2tz for all i, j > 0. Thus, by the Diamond
Lemma ( |1, 1.11.6]), {z%23 | 4,5 > 0} is a basis for the quantum plane.

Exercise I.1.K
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Using the Diamond Lemma, it can be seen that the monomials a®b®c®d® in
O(Matsy(k)) are linearly independent ( [1, 1.11.7]). We claim that d is a regular
element of O4(Mata(k)). Let o € Oy(Maty(k)) such that d = 0. We can write
=31 ka'bmic"idli. Then

0=ad=>» ka"b™c"did="Y ka"b™c"di

=1 i=1

This implies that k; = 0 for 1 < i < n. Therefore x = 0.
Now suppose dz = 0, that is,

0= dzn: kia o™i e dli = zn: keida ™ i dli
i=1 i=1
Let us look at the term da’ and suppose ¢; > 0. Then

da' = (da)a®~!
= (ad — gbc)a’~?
= ada® "' — Gbca’ 1
= ada’ ' — gbg~ GVl 1e
— adab~" — Gg~2W=D gt~ 1pe

Therefore
£
da’ = aid — Z Gq 2= gli=hpc,
h=1
Hence,

0= Z kida’ib™i ¢ qli

i=1
n £; ‘
=> ki (&d -y aq2<fih>afihbc> b
i=1 h=1

n £;
= kia i db™ i d =Y kigg Mt o™ e
h=1

i=1

n 4
i=1 h=1

n £
— E kzq—(m7+n,)a£, bm,i cn1 dj7+l _ E klaq_2(£7_h) aéi—hbmi—i-lcn,;—o—ldﬁ
=1 h=1

Note that all the monomials are different and since they are linearly independent,
we have that 0 = k;q~(™it7) for all 1 < i < n which implies that k; = 0. Thus
x =0 and so d is a regular element.

Note that with a similar argument we have that AN A =0 = AdN A where A
is the k-subalgebra of O ,(Mata(k?)) generated by a, b, c.

Exercise 1.1.L
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Let R C S be rings, and suppose that there is a regular element d € S such
that dR+ R = Rd+ R and dRN R =0 = RdN R. Then there are unique maps
7,0 : R— R such that dr = 7(r)d + §(r) for all » € R. Show that 7 is an
automorphism of R and that § is a 7-derivation on R.

Since dR+ R = Rd+ R, for r € R, let 7(r) and §(r) elements in R such that
dr =7(r)d+6(r). fdr =ad+b=cd+e, then (a—c)d=e—be RINR = 0.
Hence (a—c)d = 0. Since d is regular, a = ¢, and so b = e. Therefore, 7(r) and d(r)
are unique and so we have functions 7,8 : R— R. Analogously, there exist 7’ and
8’ such that rd = d7'(r) + §’'(r). Let r,t € R. Then d(r +t) = 7(r +t)d + §(r + t).
On the other hand,

dir+t)=dr+dt=7(r)d+6(r) +7(t)d+6(t) = (7(r) + 7(¢))d + 6(r) + 6(t).

It follows that 7(r +t) = 7(r) + 7(¢) and 6(r + ¢t) = §(r) + §(¢t). Note that, if
7(r) = 0, then dr = 6(r) € dRN R = 0. Hence dr = 0 and so » = 0. Thus, 7 and
7/ are injective. Now, we have that
7(r)d = dr'(r(r)) + 8 (7(r)) = 77'7(r)d + §(7'7(r)) + &' (7(r)).
Hence 7(r) = 77'7(r). It follows that 7/7(r) = r. Analogously, 77'(r) = r. On the
other hand,
drs =7(r)ds 4+ 6(r)s = 7(r)(r(s)d + §(s)) + 6(r)s

(r)r(s)d+ 7(r)d(s) + 6(r)s.

T
T

drs =71(rs)d + 6(rs).

Hence, 7(rs) = 7(r)7(s) and §(rs) = 7(r)d(s) + d(r)s. Thus, 7 is an automorphism
of R and ¢ is a 7-derivation on R.
Exercise 1.1.M

Let F = k (X1, ..., X:) be the free algebra over k on letters X1, ..., X; and let 7
be a k-algebra endomorphism of F'. Given any fi, ..., fy € F' show that there exists
a unique k-linear T-derivation ¢ on F such that 6(X;) = f; for all 1 < <.

Let ¢ : F—> Maty(F) be the k-algebra homomorphism given by ¢(X;) =
(TO())?) fi ) Then

(X X)) = (X)) (X,) = (T(())Q) )f{) (T(é(j) )JQJ) _ (T(X O)T(X5) T(X))(fj;fl ) _

So, define § : F—=F as §(X) = (1 0)¢(X) (9) for all X € F. Then §(X;X;) =
7(Xi)f; + fiX;. Consider X; and Xy - X;) any monomial. We are going to
prove that J is a 7-derivation on F' by induction on ¢. Then,

(X1 X5y X))

= (10)p(X1X;01) - Xiry) (9)
= (1 0)p(X1)d( X1y -+ X)) (1)
(X1 T(Xa1y X)) T(Xi1))0( X2y X)) +0(Xi(1) Xi(2) - Xice
10) < (X1) f1 ) ( )Xo &) @ Xui))---Xq:(t) W) Xi2) <>) (9)
( 1)(7( z(l) (Xi2) - Xir)) + 0(X50)) Xiga) - Xi)) + [iXaq) - X
= 7(X1)6( X1y - X)) + 5(X1)Xi(1) - X

Hence § is a 7-derivation on F', and it is clear that J is unique.
Now let I = (G) be the ideal generated by some set G C F. If 7(g),d(g) € I
for all g € G, show that I is stable under 7 and §. Let r,s € F and g € G. Then
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7(rgs) = 7(r)7(9)7(s). By hypothesis, 7(g) € I, hence 7(rgs) € I. On the other
hand,

d(rgs) =7(r)o(gs) +6(r)gs

=7(r)(7(9)d(s) + 6(g)s) + (r)gs

=7(r)1(9)d(s) + 7(r)d(g)s + 6(r)gs.
Since 7(g),0(g),g € I, d(rgs) € I. It follows that 7 induces a k-algebra endo-
moephism of F'/I and ¢ induces a T-derivation on F'/I.
Exercise 1.1.M

Consider the algebra Oy(Mata(k)). We want to use the model approach to see
that this algebra is isomorphic to an iterated skew polynomial ring. First, we
construct an iterated skew polynomial algebra

B = k[z][y; 02][2; 03]

where k[z] is a polynomial ring, oo is the k-algebra automorphism of k[z] such
that o9(z) = ¢ 'x, and o3 is the k-algebra automorphism of k[z][y;os] such
that o3(z) = ¢ 'x and o3(y) = y. Consider the k-algebra homomorphism oy :
k{z,y,z) —k{x,y,2) given by o4(z) = z, o4(y) = ¢ 'y and o4(z) = ¢ ‘2.
By exercise I.1.L there exists a unique o4-derivation d4 on k (z,y,z) such that
d4(z) = (¢71 — q)yz and 84(y) = 0 = d4(2). Consider the ideal

I = <y:1: — q_lxy, 2T — q_lxz, Y — yz> .

Hence B = k{z,y,z) /1. Let see that the images of the generators of I under d,
are in [.

04(yx) = o4(y)oa(z) + da(y)x
=q 'yla " —q)yz
= (¢7? = Vyyz.0(zy) = 0a(x)d4(y) + ba(z)y = (¢~' — Q)yzy.

Then,

-1

Sa(yr —q tay) = (¢ > = Dyyz — ¢ (¢ —q)yzy = (¢ = Dy(yz — 2y).

We also have that,
04(2y) = 04(2)04(y) + 0a(2)y = 0 = d4(y2).

And,
04(zx) = 04(2)04(x) + 04(2)x
=q 2007~ qlyz
= (7%= 1)zyz.
04(x2) = 04(x)d4(2) + 04(x)2
= (¢ = qyz=.
Then
Sa(zx —q lwz) = (¢ = Dzyz —q (¢ —@)yzz = (72 = 1)(2y —y2)2.

For the automorphism o4, we have that
au(yr) = q 'yx
o4(zy) = x(q™'y)
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Then,
ou(yr —q tawy) = q tyr — g Pey = ¢ (yx — g lay).
Also,
o4(zx) = ¢ ez
ou(zz) = x(q"'2)
Then,
os(zx —q laz) = q ler — ¢ Par = ¢ Mz — ¢ taz)
And,
oa(zy) =q '2q ly = q 2y
ou(yz) =q 'y e =q %yz
Then,

oa(zy —yz) = ¢ P2y — q Pyz = ¢ (yz — 2y).
Thus, o4 induces an automorphism of B and d,4 induces a o4-derivation on B.
Exercise 1.1.0

Construct a k-algebra isomorphism of Oy(GL2(k)) onto Laurent polynomial ring
0,(Sl2(k))[zF]. Consider the k-algebra homomorphism

¢k <X117X127X217X22> *>Oq(5l2(/€))[2i]

given by ¢(X11) = X112, ¢(X12) = X122, ¢(Xo1) = Xo1 and ¢(Xa) = Xop. We
have to check that ¢ preserves the relations [2.1]|2.3]

H(X11X21) = ¢(X11)p(X21)
= X112X21
= 2X11X21
= q2Xo1 X1
qd(X21X11) = q(X21)p(X11)
= qXa1 X112
= qzXo1 X1
Analogously the other relations in [2.1] are preserved. For [2:3]
P(X12X21) = ¢(X12X01)
= X122X21
= X291 X122
Xo1)p(X12)
Xo1X12).

= ¢(
= ¢(
For 2]
P(X11 X2 — Xoa X11) = ¢(X11)9(Xa2) — ¢(Xa2)p(X11)

= X112X25 — X2 X112

= (X11 X920 — X2 X11)2

=(q—q )X X122

= (¢ — ¢ P(X21)p(X12)

= o((q — ¢ ") X1 X12).
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Thus, there is a k-algebra homomorphism
¢ - Oy(Maty (k) —= O, (Sla(k))[zF].
Note that,

o~

¢A5(Dq) = (X1 X922 — ¢X12X21)
= G(X11)p(X22) — q0(X12)$(X21)
= 2X11 X922 — q2X12 X9
= 2(X11 X920 — qX12X01)

= Z.

Hence qAS sends D, to an invertible element and so there exists a k-algebra homo-
morphism
¢+ Og(GLa(k)) —= Oy (Sl2(k))[=].
In order to see that ¢ is an isomorphism, we will give its inverse.
Define 1 : k (X11, X12, Xo1, X22) ‘>(9q(GLn(k‘)) as Y(X11) = %1;7 P(Xi2) =
XD—lqz, P(X21) = Xo1 and ¢(X22) = Xao. It is not difficult to see that ¢ induces a
k-algebra homomorphism

¥+ Oy(Maty(k)) —= Oy (GLy(K)).
Then,

~

X11 X922 — ¢X12X01)

(
(X11)v (X22) - Q¢(X12)1Z(X21)
X X192
X —qg—X
Dq 22 —( Dq 21
_ X111 X9 — qX12X0
Dy

U(Dy) =¥
=9

=1
Thus, @Z induces a k-algebra homomorphism
U1 Og(Sly(k)) —= Og(GLs (k).
Hence, there exists a k-algebra homomorphism
¥+ Og(Sla(k)) 2] —= Oy (GLa (k)
sending 9(z) = D,. It is clear that v is the inverse of ¢.

Exercise 1.3.A
Let r,s € R. Then

¢(7‘)¢(3) — (agr) 6(:)) (ags) 5(55))
_ (a(r)a(s) a(r)5(5)+5(r)s)
0 TS
¢(TS) _ (a(gs) 6(;;5))
It is clear that ¢(rs) = ¢(r)¢p(s) if and only if ¢ is an a-derivation.

Ch. 1.3 Proposition
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Proof. Let 71 : k|K, K~ '] — k[K, K~!] be the automorphism given by 71 (K) =
¢ 2K. Then we can construct the skew polynomial ring k[K, K !][E;7i]. Note
that,

KEK'=Kn(KY)E=K¢K 'E =¢FE.
Let 7 : k[K, K~ '] —=k[K, K~!][E; 7] given by 7(K) = ¢? K. Then

Er(K)=E¢*K = KE = 1(11(K))E
Er(K')=Eq K '=K 'E=7(n(K"))E.
By the universal property of skew polynomial rings [6, 2.5], there exists a unique
automorphism
T k[K, K Y[E; 1] —k[K, K '[E; 7]

sending 73 (K) = ¢? K and 79(E) = E. Consider the following ring homomorphism

¢ k(K,K' E) — Mato(k[K, K1][E;1])

given by ¢(K) = <q20K 2) and ¢(F) = (E q:lqul ) Hence

Thus ¢ induces a ring homomorphism ¢ : k[K, K ~!][E; 71]—=Mats (k[K, K ~!][E; 71]).
By exercise [.3.A there exists a unique mp-derivation dy on k[K, K~1|[E; 7] such
that 62(K) = 0 and 02(F) = I;:;if(. So we have an iterated skew polynomial ring
A = k[K, K7Y|[E; 71][F; 72, 82]. To see the isomorphism, we only have to check that
the defining relations in U, (slz(k)) are valid in A. For,

KEK™'=Kn(KYE=K¢K 'E = ¢*F.
KFK™' = K(n(K YF 4+ 6,(K') = Kq 2K 'F = ¢ *F.

K1-K
FE = TQ(E)F + 52(E) =FEF + ﬁ
then EF — FE = K==K_ Thus, A 21, (sk(k)). O
Hopf algebra structure of U, (sl>(k))
We have that
k(E,F K K
uq(5[2(k)) = < > K_K—l)
<KEK*1 — ?E,KFK-1 — ¢-2F,EF — FE — QIT>

There is a k-algebra homomorphism
A:k(E,F K, K" —Usla(k)) @ Uy(sl2(k))



30 MAURICIO MEDINA-BARCENAS

sending A(E) =E®1+K®E,A(F)=FK '+1@Fand A(K)=K®K.
Let us check that A preserves the relations.

A(KEK™') = A(K)A(E)A(K™)
=(KK)(E®l+KeE)(K oK™
=(KE®K+K*@KE)(K 'oK™!)
=KEK '®1+K®KEK™!
= (PE®1+K®—¢*E
=-¢@(Fe1+K®E)
= A(-¢°E)

A(KFK™') = A(K)A(F)A(K™Y)
=(KoK)(FoK '+1F) (K 'eK™")
=(KFol+KoKF) (K 'oK™")
=KFK '@ K '4+1@KFK™!
=¢FOK '+1®¢%F
=¢?(FK'+10F)
=A(g*F)

AEF)=(E®1+KQE)(FK'+1®F)
=FFQK '4+EQF+KF®EK '+ K®EF

A(FE)=FE®K '+EQF+FK@K 'E+K®FFE
Then

)

A(EF —FE)=(EF -FE)@ K '+ K® (EF —FE) +¢ *FKQFEK ' - FK® K 'E

K—K! K—K!
:(q_q;l)®K‘k+K®(q_q_1)+FK@Mq4EK—h<K4E)
K—-K! K—K!
:“rﬂA)®K*+K®(mw4)+FK®mHE—K”E
 K9K'-K'9K'+K@K-KQK™!
a q—q!
 K@K-K'oK!
q—q!
K—-K!
:A<q—¢4)

So, there is a unique k-algebra homomorphism
AUy (sla(k)) —=Uy(sla (k) @ Uy(sla(k))

To see that A is coassociative, it just has to be proven in the generators.
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Consider the k-algebra homomorphism
S k(E,F,K,K™") —Uy(sly(k))"
given by S(K) = K1, S(E) = —K~'E and S(F) = —FK. Then,

S(KEK™') = S(K ")S(KE)
= S(K™1)S(E)S(K)
=K(-K'E)K!
=—-FEK!
_ *(]2K71E
S(¢°E) = ¢*S(E)
_ *(]2K71E

S(KFK™') = S(K1HS(F)S(K)
=K(-FK)K™*
=—-KF
= ¢ °FK
S(¢?F) = —q *FK
S(EF) = (-FK)(-K'E)=FE
S(FE)=(-K'E)(-FK)= K 'EFK
S0,
S(EF —FE)=FE - K 'EFK
= FE— (¢ °EK ") (¢’KF)
=FFE—-FEF
B K1-K
Coa—q7!
-s(=r)
q—4q
Therefore S induces a unique k-algebra anti-homomorphism
S Uy(sla(k)) — U, (sl2(k)).
Note that
S’ K)=S(K ') =K=K'KK
S*(E)=S(-K'E)=-S(E)S(K™ )= K 'EK
S*(F)=S(-FK)=-K Y(-FK)=K 'FK
This implies that S is bijetive and hence so is S. Now, let us prove that S is an
inverse of Id with the convolution product.

(S * Id)(K) = S(K)K
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(S Id)(E)=S(F)+ S(K)E
=K 'E4+K'E
=0
=¢e(E)

(S*Id)(F)=S(F)K'+F
= _FKK '+ F
=-F+F
=0
=e(F)

Lemma 2.2. Let H be a Hopf algebra. Let a,b € H such that (S * Id)(a) = €(a)
and (S * Id)(b) = e(b). Then (S * Id)(ab) = c(ab).

Proof.

(S x Id)(ab) = po (S® Id)o Alab)

o (5@ Id)(A(a)A(b))
o (S®Id)()_ arby ® azby)
(a1by)agby
1)S(a1)azby

1)e(a)ba
> S(b1)by
e(b)

S
S(b
S(b

|
MMM?; tx:

—

)
)

ela
ela

—

O

By the lemma S is an antipode for U, (sla(k)). Therefore U, (sl2(k)) is a Hopf
algebra.

Lemma 2.3. Consider the quantum plane Oq(kQ). Then, the multiplicative set X
in Oq(k?) generated by x and y is a denominator set.

Proof. Let 3" fi(z)y’ € Oy4(k?) and ¢‘a™y™ € X. Then
Zfl qfxmyn _ qu.fz —im ™ z)yn
=q'am Zq‘”"ﬁ ()

Suppose that fi(z) = a;, 2% + a;,_, 21+ -+ + a;,x + a;,. Then
1y

k— k=1, n

(aikmk + Ay, T ctag T+ a’lo)y = aikxkyn + QT Yy o+t ai1$yn + aioyn

— qknynaikxk + q(k 1)nyna1k ll'k_l NI qnynailx + ynaio
For each i, define

gi(w) _ qknaikfk + q(kil)naik,lmkil to g an T+ ai,
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Then
Zfl qéx’rnyn _ qfxnbyn Zq 1m gi 1, i.

Thus, X is a left denomlnator set. Analogously, X is a right denominator set. [
Exercise I1.1.B

We claim that Og((k")?) =k (z,z', 5,y | 2y = qya) is a simple ring. Let I
be a nonzero ideal of O,((k®)?) and let 0 # a € I. Since [ is an ideal, we can assume
a= Y1, filx)y" € Oy(k?). By induction on n, we will prove that I contains a
unit.

n = 0. Then a = fo(z) = bypx™ + - -+ + byz + by. By induction on m. If m = 0,
a = by € k. Now, suppose that m > 0. Then

ya = y(bpx™ + - + bz + by)
= bpyx™ + - + bryx + boy
=q "™y + -+ q by + boy

Since [ is an ideal ya — ¢~™ay € I, and so

D) Yy 2™yt (g =g )by +(1—g ™ )boy € T

ya—q "ay = (q
Since y is invertible,
(@D =g 2™ e (g =g ™+ (1= g by € 1

By induction hypothesis, I contains a unit.
Now suppose n > 0. Then

ax = fu(@)y"z + frnoa(2)y" x4 fi(@)yz + fol)r
=q " @y +q "D fua(@)ay" 4 g @)y + fo(a)e
The difference ¢ "xa — ax € I, so
(" —¢ "N faa@ay™ 4 (T =D A@ry + (T = Dfo(w)z € 1

By induction hypothesis, I must contain a unit.

Lemma 2.4. (20,(k?))(yO,(k))? = 2'y? Oy(k) for all i,j > 0.

Proof. Let z'y? (Y fo(x)y*) € 2'y? O, (k?). Using the relation in O,(k?), we get
23 (3 fe@)y) = 2 (3 f@)' )y = (X o folely W € (@0, () Oy (k).
On the other hand, consider

(@) fu(@)y") - Zfz YWD gma @y™) - (4D gm, (2)y™) € (@O (k) (yOy (k).

4y mq mj

Hence

Zfel e (x Z ng )“-(yzgmj(:c)y
Zq”le Zfe ) Zginl( ngj y™)
('’ Zq I, (@ Zfe "Zg{m( ym ngJ y"i) € 2yl O,(K?).
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d

Let P be a prime ideal of O,(k?). Since Oy((k*)?) = Oy(k?)[z~1,y~1] is simple,
P must contain a product z'y/ € P. This implies that 'y’ O, (k?) C P. By the
last lemma, (zO0,(k?))*(yO,(k*))? C P. Thus z € P or y € P because P is prime.
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