Algebra Moderna 2 Tarea 2

Prof. Mauricio Medina

- 1. Si $f(x) \in \mathbb{Q}[x]$ es mónico y divide a un polinomio mónico $g(x) \in \mathbb{Z}[x]$, entonces $f(x) \in \mathbb{Z}[x]$.
- 2. Sea R un DFU con campo de fracciones Q y suponga que $\alpha \in Q$. Pruebe que es posible escribir $\alpha = \frac{a}{b}$ con $a, b \in R$ y tal que $\operatorname{mcd}(a, b) = 1$.
- 3. Sea R un DFU con campo de fracciones Q. Sean $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in R[x]$ y $\frac{a}{b} \in Q$ con mcd(a,b)=1. Si $f(\frac{a}{b})=0$, entonces $a|a_0$ y $b|a_n$.
- 4. Sea R un DFU con campo de fracciones Q. Si $f(\alpha) = 0$ con $f \in R[x]$ mónico y $\alpha \in Q$, entonces $\alpha \in R$.
- 5. Si K es cualquier campo, demuestre que hay un número infinito de polinomios irreducibles en K[x].
- 6. Sea R un anillo. Demuestre que R[x] es un DIP si y solo si R es campo.
- 7. Demuestre que el $x^5 + x^2 + 1$ polinomio es irreducible en $\mathbb{Z}[x]$.
- 8. Demuestre que el polinomio $x^4 + 3x + 4$ es irreducible en $\mathbb{Z}[x]$.
- 9. Sea K un campo y $g, h \in K[x]$ dos polinomios primos relativos de grado positivo. Sea y otra indeterminada y sea E el campo de fracciones del dominio K[y]. Así $K \subseteq K[y] \subseteq E$ y podemos ver $g, h \in E[x]$. Definimos $f(x) \in E[x]$ como f(x) = g(x) yh(x). Muestre que f(x) es irreducible en E[x].
- 10. Sea R un subanillo de un campo K. Muestre que existe un único subcampo Q de K con $R \subseteq Q$ tal que Q es un campo de fracciones de R.
- 11. Sea K un campo con un número infinito de elementos y sean $f(x), g(x) \in K[x]$ tales que para toda $\alpha \in K$ se tiene que $f(\alpha) = g(\alpha)$. Muestre que f(x) = g(x).
- 12. Encuentre un campo finito K y dos polinomios distintos $f(x), g(x) \in K[x]$ tales que $f(\alpha) = g(\alpha)$ para toda $\alpha \in K$.

Definición: Un campo F de característica p se dice que es perfecto si la función $()^p: F \to F$ (elevar a la p) es suprayectiva.

- 13. Muestre que todo campo finito es perfecto.
- 14. Sea F un campo arbitrario de característica $p \neq 0$. Muestre que el campo F(x) no es perfecto.
- 15. Sea K un campo y $f(x) \in K[x]$ irreducible de grado p un número primo. Sea $K \subset E$ una extensión de campos con $[E:K] < \infty$. Si f(x) no es irreducible en E[x] entonces p|[E:F].