SEMINAR ON “TILTING MODULES AND TILTING TORSION
THEORIES” WRITTEN BY R. COLPI AND J. TRLIFAJ

MAURICIO MEDINA-BARCENAS

ABSTRACT. These notes were made during a graduate seminar at Benemérita
Universidad Auténoma de Puebla in Spring-2020. In the seminar, we studied
the paper [4].

1. PRELIMINARIES

It is assumed that the reader is familiar with the left and right derived functors.
The functor Ext will play a central roll in this notes. The general background on
derived functors can be found in [13|. For convenience of the reader we will mention
some results which will be used along the manuscript.

Proposition 1.1. (1) If {Ax}kex is a family of modules, then there are nat-
ural isomorphisms, for all n > 0,

Ext, <€B Ak,B> = ] Ext}(Ax, B).

keK keK
(2) If {By}rek is a family of modules, then there are natural isomorphisms,

for all n > 0,
Ext’ <A, H Bk> = H Ext’:(A, By).
keEK keK
Proof. [13, Proposition 7.21 and 7.22]. O

Proposition 1.2. (1) A left R-module P is projective if and only if Ext's (P, B) =
0 for every R-module B.
(2) A left R-module E is injective if and only if Extr(A,E) = 0 for every
R-module A.

Proof. (1) [13| Corollary 6.58 and Corollary 7.25].
(2) |13 Corollary 6.41 and Corollary 7.25]. O

Definition 1.3. Let A be a left R-module. The projective dimension of A is a less
or equal than n (pd(A) < n), if there is a finite projective resolution

0O—=>PFP,— =P —>FP—A—0.
If no such finite resolution exists, then pd(A) = co; otherwise, pd(A) = n if n is the
length of a shortest projective resolution of A.
Proposition 1.4. The following are equivalent for a left R-module A.
(a) pd(A) <n

(b) Exth (A, B) =0 for all left R-modules B and all k > n + 1.
1
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Proof. [13, Proposition 8.6]. O

Definition 1.5. A ring R is said to be left hereditary if every left ideal is projective.

Proposition 1.6. The following conditions are equivalent for a ring R:

(a) R is left hereditary;
(b) Submodules of projective left R-modules are projective;
(¢) Factor modules of injective left R-modules are injective.

Corollary 1.7. Let R be a left hereditary ring. Then pd(A) < 1 for all left R-
module A.

Given two modules A and C, an extension of A by C is an exact sequence
0 — A— B — C — 0. The next Proposition shows that Ext'(C, A) detects the
nontrivial extensions of A by C.

Proposition 1.8. FEvery extension 0 - A — B — C — 0 splits if and only if
Ext'(C, A) = 0.

Proof. |13, Proposition 7.24 and Theorem 7.31]. O

I want to show the general idea of how from an extension of A by C we get an
element in Ext'(C, A) and vice-versa, all the details can be found in |13, Ch. 7, Sec.
2]. To get this we will need the constructions of pullback and pushout in modules.
Let us start with [a] € Ext!(C, A). Taking an injective resolution

d d_y
°>FE 4 E 5

E 0 A—"s E,

of A and applying the functor Hom(C, _) to the reduced resolution E4 we get the
complex:

(C,do) (C,d-1)

Hom(C, E4) 0 —— Hom(C, Ey) —— Hom(C,E_;) —

Then Ext'(C, A) := H'(Hom(C,E4)) = Ker(C,d_;)/Im(C,dy). This implies that
[a] € Ext'(C, A) is represented by a morphism a : C — E_; such that d_;a = 0.
Hence a(C) C Kerd_; = Imdy. Therefore, there is a commutative diagram

0O—A—M--->C 0
[
ll | \La
Y
0 A EO ImeHO
n do

where M is the pullback of the angle given by a and dy. Thus, we have an extension
of A by C.

Remark 1.9. The construction that we just made, can be done using a projective
resolution of C. In this case, a : P, — A and the extension is given by a pushout
(see 13| Theorem 7.30]).

Conversely, suppose that we have an extension 0 - A - B — C — 0 of A by C.
Consider the injective resolution E of A. Then we have a morphism of complexes
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over the identity 14:

0 A B C 0
I I I

ll | g | oy | a
A Y \i

0 A o Ey o E_q = E_5

Hence d_ja; = a0 = 0. This implies that ay € Ker(C,d_1). Thus, [a1] €
Ext'(C, A).

Lemma 1.10. Let 0 A—‘tsp-L.C 0 be an exact sequence and
let M be a module. Then the connection morphism O : Hom(M,C) — Ext'(M, A)
is given by taking the pullback along p. That is, given f € Hom(M,A), 9(f)
corresponds to the extension:

OHA$L71>MHO
|
1\L Iy J{—f
\
0 A - B - C 0

Proof. We have to recall how the connection morphism was defined. Let us take
injective resolutions

/
-1

’ ’
n / dg /
E} E

E 0 A E,

v, @,

1 1
E E",

E" 0 c E",

of A by C respectively. Using the dual version of the horseshoe lemma, we have an
injective resolution

d() d—l

i E_, E_,

E 0 B

Ey

of B such that E; = E; @ EJ/. Therefore, there is a commutative diagram:

0 0 0

0 A—-pB—LsC 0
, 90 - J ”
L. n n
.

0 Joy L N N ] 0
dl do dy

0 Jo N Sy 0
a, d_y a’
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Applying the functor to the reduced resolutions, we get

0 — Hom(M, E}) L Hom(M, Eo) L Hom(M, E) —= 0
l(M,dS) J/(M,do) l(]ﬂ,dg’)
(M,C-1) (M,6-1)

0 —— Hom(M, F’ ;) ——=Hom(M,E_;) ——=Hom(M,E" ) ——=0

Moreover, Ker(M,dj) = Hom(M, C), where the isomorphism is given by n” o _.
Now, n : B — Ej is defined as n(b) = (0¢(b), n”"p(b)) where oy : B — E}, is such that
oot = 1n'. Analogously, do : Ey — E_; is defined as do(z) = (01(T), dy&o(x)) where

1 : Cokern — E',. Then d(f) = [a] € Ext'(M, A) is given by the morphism
a € Hom(M, E’ ;) such that a = Cdogn/’f where & : Ej — Ep is defined as
&(z) = (0,z) and (1B — E’ | is defined as C/,\l(amy) = z. Set B = C_1doSon.
Note that

Bp(b) = C1do(0,7"p(b)) = C1(o1.(0, 77 p(B), dn” p(b))

)
= (1(01(0,77p(0)). 0) = 02 (0,17 p(0)).
On the other hand, djoo(b) = (_101({po0(b)) = 01(00(b),0). Thus, we have the
following diagram

0 /A . V 0
’ d/
0 A—> By —Tmd) 0.

Let us see that this diagram is commutative. Let a € A. Then opvj(a) =
o0y(i(a),0) = o¢(i(a)) = oo(i(a)) = n'(a) = n'(1(a)). On the other hand, djooy(b,m) =
dyao(b) = o1(00(®),0) = o1 (0,7p(B)) = —Bp(b). Since (b,m) € L, p(b) =
—f(m). Then djogy(b,m) = —pBp(b) = Bf(m) = am(b,m). This implies that
A(f) = [a] € Ext'(M, A) is the element which corresponds to the extension

0—sA— s " M o

O

Definition 1.11. Let M be an R-module. The Ext-orthogonal class of M is given
by

L = {gN | Extp(M,N) = 0}.
Definition 1.12. Given two R-modules M and N, it is said that IV is M-generated

if there exists an epimorphism p : MX) — N for some set X. The class of modules
M-generated is denoted by Gen(M).

It is not difficult to see that the class M~ is closed under extensions and contains
all the injective R-modules by Proposition and the class Gen(M) is closed under
direct sums and epimorphisms, for all modules M.

Definition 1.13. A module M is finendo if M is finitely generated as module over
its endomorphism ring.

Lemma 1.14 (Lemma 1.5, [3]). Let M be a module. Then, M* € Gen(M) for
every set X if and only if M is finendo.
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Proof. = Suppose that MM € Gen(zgM). Then, there exists an R-epimorphism
p: MO — MM for some set I. Let (Zm)menr be the element in MM guch that
Zm = m. Hence, there exists (y.)icr € M such that p((yi)ier) = (@m)menm. This
implies that there there is a finite subset F' C I and homomorphisms p; : M —
MM such that (zm)menm = p((Yi)icr) = Y;cp pi(yi). For each m € M, let m,
denote the canonical projection 7, : MM — M and set f™ = m,,p; € Endg(M).
Therefore,

m = T ((Tm)mem) = Tm (Z pl(%)) = Z (Tmpi(yi)) = Z [ (i),
ik icF icF

for each m € M. Thus, M as module over Endg (M) is generated by {y; | i € F}.

< Let S = Endg(M) and suppose sM is generated by {y1,...,yn}. Let X be
any set and (mg),ex € MX. For each x € X there exist f7,..., fZ € S such
that m, = > ., f*(y;). Let ¢ : M™ — M be the homomorphism given by
d(ma,.cymy) = >0 fF(m;) and let ¢ : M™ — M¥ be the homomorphism given
by ¢(mq,....mp) = (¢z(m1,....mp))zex. Consider the element (y1,...,y,) € M™.
Then,

(b(yla 7yn) = <¢w(y1a ---ayn))azeX = (Z fzx(yz)> = (mw)weX-
reX

i=1
This implies that (my).ex € trM(MX). Thus, MX is M-generated. O
Lemma 1.15. Let T be an R-module. If Gen(T) = T+, then Gen(T) = Pres(T).

Proof. Let M € Gen(T) and X = Hompg(T, M). Then, there is an exact sequence
0— K — T 2 M — 0. Applying the functor Hompg(T,_), we get

—— Homp(T, T™)) > Homp(T, M) — Ext*(T, K) —= 0

Note that Extl(T, 7)) = 0, by hypothesis. We claim that p, is surjective. For,
consider h € Homp(T, M). Let ny, : T — TX) be the canonical inclusion. Then,
p«(mn)(t) = pnu(t) = h(t). Thus p, is surjective and hence Ext!(T, K) = 0. This
implies that K € T+ = Gen(T). So, Gen(T) C Pres(T). We always have that
Pres(T) C Gen(T). O

Lemma 1.16. Let M and N be R-modules such that N € Pres(M) and Gen(M) C
N-L. Then, N € Add(M).

Proof. By hypothesis, there is an exact sequence 0 — K — M) — N — 0 with
K € Gen(M). Since Gen(M) C N*, Ext'(N,K) = 0. This implies that the
sequence splits. Thus, N € Add(M). ]

Lemma 1.17. Let M be a left R-module. Then, M~ is closed under epimorphisms
if and only if pd(M) < 1.

Proof. = There exists an exact sequence 0 — K — RX) — M — 0 for some
set X. We claim that K is projective. Let N be any module. By Proposition
Ext'(R™), N) = 0 = Ext*(RX), N). Tt follows that there is an exact sequence
0 — Ext! (K, N) — Ext?(M, N) — 0, and so Ext' (K, N) = Ext*(M, N). Let E(N)
denote the injective hull of N and consider the exact sequence 0 - N — E(N) —
E(N)/N — 0. Again by Proposition Ext'(M, E(N)) = 0 = Ext*(M, E(N)).
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Therefore Ext' (M, E(N)/N) = Ext*(M, N). Hence Ext'(M, E(N)/N) = Ext' (K, N).
Since E(N) € M+, E(N)/N € M* by hypothesis. Thus, Ext' (K, N) = Ext' (M, E(N)/N) =
0. Since N was an arbitrary module, it follows that K is projective. Thus,
pd(M) < 1.

< Let N € M+ and let p: N — L be an epimorphism. Set K = Ker p. There
is an exact sequence 0 — K — N % L — 0. Applying the functor Hompg (M, _) to
that sequence, we get an exact sequence

-+ — Ext'(M,N) — Ext'(M, L) — Ext*(M,K) — -

It follows that Ext*(M, K) = 0 by Proposition and Ext'(M, N) = 0 because
N € M. Therefore, Ext!(M, L) = 0. Thus, L € M=*. O

Corollary 1.18. Let T be a module. Then pd(M) <1 and Ext*(T, 7)) =0 for
any set X if and only if Gen(T) C T+ and T+ is closed under epimorphisms.

Proof. By Lemma [1.17) T is closed under epimorphisms if and only if pd(T) < 1.
For any set X, Ext' (T,T7()) = 0, that is TX) € T*. Therefore, Gen(T') C T*.
Reciprocally, if Gen(T) C T, Ext*(T,T74)) = 0. O

Definition 1.19. Let M be a left R-module. The module M is called small if the
functor Hompg(M, _) commutes with direct sums canonically.

Remark 1.20. Every finitely generated module is small
Proposition 1.21 (Lemma 1.2, [14]). The following conditions are equivalent for
a module M.
(a) M is small and M~ is closed under direct sums and epimorphisms;
(b) M is finitely generated and pd(M) < 1.
Proof. There exists an exact sequence
(1.1) 0—K—RX 5 M0

for some set X. By Lemma K is projective. It follows from [1] that K =
P .ca Ka is adirect sum of countable generated modules K. Set D = @, . E(Ka).
There is a canonical inclusion K <+ D. Since M' is closed under direct sums,
Extl(M7 D) = 0. Applying Hompg(-, D) to the sequence , we get an epimor-
phism

.-+ — Hompz(RYX), D) — Hompg(K, D) — 0.
Therefore, there exists ¢ : RX) — D such that 9lx =1i.

0—— K —— R
li g .
s 9
i
D
For each o € A, let m, : D — E(K,) and p, : E(K,) — E(K,)/K, be the
canonical projections, respectively, and set g, = paTag, that is, the composition

RY Lo @ ) E(Ka) > B(K,) "> E(K,)/Ka

Now, define h : R — @ .\ E(Ks)/Ka as h(z) = (ga(z))aca. Note that
ga(K) = 0 for each o, hence K < Kerh. From (1.1), M = RX) /K. Therefore,
h induces a homomorphism h € Homp (M, @) E(Kas)/Ka). Since M is small,
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there exists a finite subset /' C A such that Inh C @, p E(Kqa)/Kq. Thus, Img C
Docr E(Ka) + @Doen Ka- Let 7 denote the projection of D onto €P,,¢r E(Ka)
and let K denote @aeF K,. If g =7g, then § € Hompz(R™X), K). Since gl = id,
RX) =Kerg® K. Set A=KergNK =@, p Ka. It follows that

Kerg+ K

K

Since Ker g is projective, by [1], Ker g = 69/365 is a direct sum of countable gener-
ated modules. Also, A is a direct sum of countable generated modules. Hence M
is direct sum of a countable generated module C and a projective module B,

M =Kerg/A=@Co/ P Ka=CaB.

BEE ackF

M =RM/K = =~ Ker g/ A.

Since M is small, B is countable generated. Thus, M is a small countable generated
module. Therefore M is finitely generated, by [14, Lemma 1.1].

< By Lemma M is closed under epimorphisms. Since M is finitely
generated, M is small. Now, let {B;};c; be a family of modules in M. Tt is not
difficult to see that, if M is small then Fxt™(M,_) commutes with direct sums for

all n > 0. Hence,
Ext! (M, @31) =~ B Ext' (M, B;)
il iel
Since each B; € M+, Ext'(M, B;) = 0. Therefore Ext' (M, @, ; B;) = 0. Thus,
D, Bi € M+, O
Corollary 1.22. If M satisfies any of the conditions in Proposition then M
is finitely presented.

Proof. Since M is finitely generated and pd(M) < 1, there is an exact sequence
(1.2) 0—=P—=R™ M0

with P projective. Since P is projective, P is a direct summand of a free module
RY). Let j : P — RY) be the canonical inclusion, let g : R®Y) — E(R)Y) be the

canonical monomorphism and set f = gj. Since M is closed under direct sums,
E(R)Y) € M* and so Ext' (M, E(R)Y)) = 0. Thus, there is an exact sequence

0 — Hompg(M, E(R)Y)) = Homg(R™, E(R)Y)) — Hompg(P, E(R)Y)) — 0.
This implies that f can be extended to a homomorphism f : R — E(R)(Y). Let
m, : E(R)Y) — E(R) and p, : R®Y) — R be the canonical projections for each
y €Y. Since R™ is fin. gen. F = {y € Y | m,f # 0} is finite. It follows that p,
is the corestriction of myg to R. Let y € Y\ F. Then wyf =0 and so m,f = 0.
This implies that pyj = mygj = myf = 0. Hence P =Imj C RF) and so P is a
direct summand of a fin. gen. free module. Thus, P is fin. gen. and M is finitely
presented. O

Lemma 1.23. Let M be an R-module. If M is faithful and finendo, then

(1) there exists an exact sequence 0 — R = M™ — M’ — 0 for some n > 0.

(2) for any module L, the induced homomorphism i* : Homg (M, L) — Homg(R, L)
is surjective if and only if L € Gen(M).

(3) M'+ C Gen(M).
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(4) M generates every injective module.

Proof. (1) Set S = Endr(M) and let {t1, ..., t,} be a set of generators of M. Since
M is faithful, there is a monomorphism i : R — M™ given by i(r) = (rt1, ..., rt,).
Hence, we have the exact sequence

0> RS M"— M"/R—0.
(2)= Suppose i* : Homr(M", L) — Hompg(R, L) is surjective and let [ € L.
Since Homp(R, L) = L, there exists ¢ € Hompg(M™, L) such that gi(1) = I. Thus,

l € tr™(L) and so L € Gen(M).
< Applying Hompg(_, L) to the exact sequence, we get

0 — Hompg(M’, L) — Homp(M™, L) > Homp(R, L)

Let 2 € L = Hompg(R, L). Since L € Gen(M), there is an epimorphism M) — L
for some set Y. Making the inverse image of x, we have a homomorphism f : M™ —
L and (z1, ..., xm) € M™ such that f(xy,...,Tm) = x. Since gM = (t1,...,t,), for
each 1 < i < m there exists f{,...,f{ € S such that z; = > i1 fi(t;). Define

a: M™ = M™ as a(y1, ..., yn) = (2?21 F1 i)y 202y fjm(yj)> Therefore,
afty, ..., tn) = (21, ..., Tm). This implies that ¢*(fa)(1) = far(l) = f(z1, ..., Tm) =
x. Proving that ¢* is surjective.
(3) If L € M'*,ie. Ext!(M’,L) = 0, then i* is surjective. Thus, M € Gen(P).
(4) By (1), there is a monomorphism i : R — M™. Let E be an injective module

and ¢ : RX) — E be an epimorphism. Then ¢ can be extended to an epimorphism
¢ : (M™)X) — E. Thus, E € Gen(M). O

2. TILTING MODULES

Definition 2.1. A left R-module T is tilting if satisfies the following conditions:
(T1) There is an exact sequence 0 — R — T" — T” — 0 such that 7", 7" €
Add(T).
(T2) Ext™(T,T™)) = 0 for any set X.
(T3) pd(T) < 1.
If, moreover, T satisfies the condition
(T4) T is finitely presented,

then T is a classical tilting module. A module T is a classical partial tilting module
provided (T2),(T3) and (T4) hold true.

Proposition 2.2. (1) A left R-module T is tilting if and only if Gen(T) = T+.
(2) A left R-module P is classical partial tilting if and only if P is small,
Gen(P) C Pt and P+ is a torsion class.
(3) A left R-module T is classical tilting if and only if T is (self-) small and
Gen(T) =T+.

Proof. (1) = Suppose, T is a tilting module. Then, Gen(T) C T+ by Corollary
Now, by (T1), there is an exact sequence 0 — R % T" — T” — 0 with
T, T" € Add(T). Let M € T+. Then Ext'(T”, M) = 0 (see Proposition [L.1).
Hence, there is a exact sequence

0 — Homp(T", M) — Homp(T", M) —*—> Homp (R, M) — 0.
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Since Hompg (R, M) = M, this implies that for each m € M, there exists g €
Homp(T’, M) such that g(«(1)) = m. Therefore, M is T-generated.

< Since Gen(T) = T+, T+ is closed under direct sums and epimorphisms. This
implies that Ext!(T,T7X)) = 0 for any set X and pd(M) < 1 by Lemma m
Since E(R) € Gen(T), there is an epimorphism p : TX) — E(R) for some set X.
Consider ¢ : R — E(R) the canonical inclusion, then there exists a monomorphism
j: R — T™) such that pj = 4. This implies that T is faithful, i.e., Ann(T) = 0.
On the other hand, since Ext'(T,T) = 0, by Proposition Ext! (T, TY) = 0 for
any set Y. That is TY € T+ = Gen(T) for any set Y, thus 7T is finendo by Lemma
1.14] Set S = Endg(T) and let {t1,...,t,} be a set of generators of 7. By Lemma
1.23] (1), there is an exact sequence

(2.1) 0—-R5T"—T"/R—0.

Therefore 7" /R € Gen(T) = Pres(T) = T+ by Lemma m This implies that
there is an exact sequence

(2.2) 0= LT 5T/R—0
with L € Gen(T') = T+. Hence, applying Hompg(_, L) to the sequence (2.1)), we get

— Homp(T™, L) > Hompg(R, L) — Ext'(T"/R, L) — 0,

because Ext!(T,L) = 0. By Lemma 2), +* is surjective. This implies that
Extl(T" /R, L) = 0. Hence, the sequence (2.2) splits by Proposition and we get
condition (T1). Thus, T is a tilting module.

(2) = Tt follows from Proposition that 7' is small and P+ is closed under
direct sums and epimorphisms. Hence Pt is a torsion class. Since P~ is closed
under epimorphisms and by (T2), Gen(P) C P+.

<. By Corollary P is finitely presented and by Proposition pd(P) < 1.
Since Gen(P) C P, Ext' (T, TX)) = 0 for any set X.

(3) = By (1), Gen(T) = T+. Since T is fin. pres., T is small.

< By (1), T is a tilting module. Since Gen(T) = T+, T is a torsion class. It
follows by Corollary that 7T is finitely presented. O

Remark 2.3. Note that the proof of (1) of last Proposition shows that every tilting
module is faithful and finendo.

The Proposition suggest the following generalization of classical partial tilt-
ing module.

Definition 2.4. A left R-module P is a partial tilting module if Gen(P) C P+ and
P~ is a torsion class.

Remark 2.5. e Classical tilting module if and only if tilting and small (or just
fin. gen.).
e Classical partial tilting module if and only if partial tilting and small (or
just fin. gen.).
e Any direct sum of copies of a (partial) tilting module is a (partial) tilting
module. (This is something which does not happen in the classical case)

A classical partial tilting module is defined as a finitely presented module satis-
fying (T2) and (T3). Every partial tilting module P satisfies conditions (T2) and
(T3) but next example shows that conditions (T2) and (T3) are not sufficient for
P to be partial tilting.
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Example 2.6. Let R = Z and P = zQ. Since R is a hereditary ring, pd(P) < 1.
Moreover, Extl(RP(X)) = 0 for any set X because R is Noetherian. Thus, P
satisfies (T2) and (T3). Note that Gen(P) consists of all divisible groups. On the
other hand P+ = {G | Ext'(Q,G) = 0} is the class of cotorsion goups which is
not a torsion class because is not closed under direct sums. For, consider a prime
number p and the abelian group G = @, ( Zy». It follows from |7, Corollary 54.4]
that each Z,» is a cotorsion group but G is not. Note that P is closed under

epimorfisms (Lemma [1.17]).

Clearly a summand of a classical tilting module is a classical partial tilting mod-
ule. The converse is not true in general.

Example 2.7. Let k be a universal differential field of characteristic 0 with dif-
ferentiation D. Denote by R = k[y; D] the ring of differential polynomials of one
indeterminate y over k. In [5, Theorem 1.4], it is proved that R is a left and
right principal ideal domain. Hence R is Noetherian and hereditary. Moreover R
has only one simple left R-module S up to isomorphism which is injective. Un-
der this hypothesis is not difficult to prove that S is a classical partial tilting R-
module. Suppose that there exists a classical tilting module T such that S <% T.
If T is not injective, E(T')/T is nonzero torsion (singular) R-module. It follows
from [2, Theorem 4] that every torsion (singular) module is semisimple. Thus
E(T)/T is semisimple and so E(T)/T = S™X) for some set X. Therefore there ex-
ists a split monomorphism ¢ : S — E(T)/T. Applying Hompg(S, -) to the sequence
0—-T— E(T)— E(T)/T — 0 we get

—— Homg(S, B(T)) —=> Hompg(S, E(T)/T) — Ext'(8,T) —= 0

where 7 : E(T) — E(T)/T is the canonical projection. If there exists 0 # ¢ €
Hompg (S, E(T)) such that ¢ = m.(¢p) = we), then S = ¢(S) <¥ E(T) and 0 #
¢(S) = m(S). This implies that ¥(S)NT = 0 and so ¥(S) = 0 which is a
contradiction. Thus, ¢ ¢ Im . Therefore Ext'(S,T) # 0 which cannot be because
T is tilting. Hence T is injective and finitely generated. By [2, Corollary 6], T
is semisimple and so T = S for some set X. Therefore the condition (T1)
implies that R is semisimple, contradiction. Thus, S cannot be a direct summand
of a classical tilting R-module. Nevertheless, S is a direct summand of the tilting
module T = S @ E(R). By [8 Corollary 7.12], E(R) is isomorphic to the skew
field of fractions of R. Hence E(R) is a flat non projective R-module. It follows
from [11, Theorem 4.30] that E(R) is not finitely generated and so T is not a
classical tilting module. In fact T' does not satisfies condition (T1g). For, suppose
that there exist n,m € N and an exact sequence 0 — R = T — T — 0
with 77 <® T()_ Since T is injective, v can be extended to a monomorphism
v : E(R) — T™). Hence v'(E(R))/v(R) < T™) /u(R) = T'. Thus T’ contains a
copy of E(R)/R which is torsion and hence semisimple. Then, E(R)/R = S for
some infinite set I because F(R)/R is not finitely generated. Therefore,

S s Soc(T) < Soc(T™) = 8,
contradiction. Note that P is also a direct summand of E(R) @ E(R)/R which is
tilting by the next proposition.

Proposition 2.8. Let R be a left hereditary left Noetherian ring. Then T =
E(R)® E(R)/R is a tilting module.
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Proof. Since R is left hereditary, T is injective and pd(T) < 1. Moreover, TX) is
injective for any set X. Hence, Ext'(T, T(X)) = 0 for any set X. We have an exact
sequence 0 - R — E(R) — E(R)/R — 0 with E(R), E(R)/R € Add(T). Thus, T
is a tilting module. O

Lemma 2.9. Let P be a module satisfying (T2) and (T3).

(1) Then there is a module T such that P is a summand of T, Gen(P) C P+ =
T+ C Gen(T), and T satisfies (T1), (T3) and Ext*(T,T) = 0.
(2) Let T be asin (1). Then P is partial tilting if and only if T is tilting.

Proof. (1) Let {a;}icr be a set of generators of Ext'(P, R). Each a; corresponds
to an extension of R by P, that is, 0 - R — M; — P — 0 for all i € I.
Taking the direct sum over I of this sequences, we get an exact sequence 0 —
RO 2, Dicr Mi — P — 0. Let h: RY) — R be the homomorphism given by
h((ri)icr) = > ey 7i- Taking the push-out of j and h, we get a diagram with exact
rows

0 JT VT 0
0 RD — @ M —=PD —

l | |
0 R Py PO = 0.......(%)

This implies that P € Gen(F). Applying the functor Hompg(P, ) to (x), we get
the exact sequence

— > Homp (P, PD) -2~ Ext! (P, R) — Ext!(P, Py) — Ext' (P, P1)).

Since P satisfies (T2), Ext'(P,P0)) = 0. By construction 9 is surjective (see
Lemma [1.10) and hence Ext!(P, Py) = 0. Thus, Py € P+. Let M € Pt and we
apply Hompg(_, M) to (%).

— Homp(Py, M) 5> Homp(R, M) — Ext' (P, M) — Ext'(Py, M) — Ext' (R, M)

Since M € P+, Ext'(PY), M) = 0 and Ext'(R, M) = 0 because R is projec-
tive. Therefore, i* is surjective and Ext'(Py, M) = 0. This implies that M is
Py-generated and so M € Pg-. Thus, P+ C Gen(Py) N Ps-. Put T = P& Py. Then
T+ = PN P = PL. Since P € Gen(R), Gen(T) = Gen(P). It follows that
T+ = P+ C Gen(Py) = Gen(T). Also, note that Ext'(P, P) = 0 by hypothesis,
Ext' (P, Py) = 0 because Py € P+, Ext'(P,, P) = 0 because P+ C Gen(Py) N Py-
and Ext'(Py, Py) = 0 because Py € P C Gen(Py) N Ps-. Thus, Ext'(T,T) = 0.
By (x), T satisfies (T1). Let M be any module. Applying Hompg(_, M) to (%), for
n > 2, we get

— Ext" YR, M) — Ext"(PY), M) — Ext"(Py, M) — Ext™(R, M) — .

Since R is projective, Ext"(PU) M) = Ext"(P,, M). Since P satisfies (T3),
Ext"(PY), M) = 0. This impliesthat Ext"(Py, M) = 0 for all n > 2 and all module
M, that is, pd(Py) < 1. Thus, T satisfies (T3).
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(2) Let T be as in (1). Suppose P is partial tilting. By hypothesis, T € T+ =
P+. Therefore Gen(T) C T+ = P+ C Gen(T). By Proposition T is a tilting
module. Reciprocally, if T is tilting, P~ = T = Gen(T") by Proposition This
implies that P is a torsion class. By hypothesis, Gen(P) C P+. Thus, P is partial
tilting. (I

Theorem 2.10. Let P be a left R-module. Then, P is a partial tilting module
if and only if P is a direct summand of a tilting module T such that T+ = PL.
Moreover, T can be chosen so that T = P& T.

Proof. = There is a tilting module 7' satisfying the conditions in Lemma | 2.9 Put
T = (T ® P)®). Since P is a direct summand of T, Gen(T) = Gen(T). Also,
T+ = T" because PL = T-. Therefore T— = Gen(T), that is, T is a tilting
module. Note that 7= P ® T and P+ = TL.

< Suppose P is a direct summand of a tilting module 7" with 7+ = P+. Then
Gen(P) C Gen(T) = T+ = PL. Since Pt = T+ = Gen(T), Pt is a torsion class.
Thus, P is a partial tilting module. O

We have that, if P is partial tilting module, there exists a module C' such that
T = P & C is a tilting module and 7" and P have the same Ext-orthogonal class.
Sometimes, C' is called the Bongartz complement of P. Nevertheless, P can be,
at the same time, a direct summand of another tilting module 7" with different
Ext-orthogonal class

Example 2.11. Let R be the subring of Mat,(C) given by {(¢ %) |a € Rb,c € C}.
Hence R is a finite dimensional hereditary R-algebra. Consider P = E(R) =
Maty(C). By Proposition T’ = P@® P/R is a (classical) tilting module and so
P is a (classical) partial tilting module. We have that

J = Gen(P) = Gen(T") = T'*+ C P+,

where J is the class of injective R-modules. We claim that 7'+ # PL. Put N =
{(¢8)lacRbeC} = R(}9) which is a direct summand of R. We have that
rP={(¢93)]a,beCt®{(§%)]|c,de C} and let P; and P, denote these direct
summands respectively. Hence P, = E(N), and P/R = i}gﬁ? ~ &g L2 Note
that P, = P,. We claim that N € PH\T'%, that is N € Pi-\ Gen(T"). Since N is
not injective, N ¢ Gen(1"). Write P, = Rz + Ry with z = (§§) and y = (§9).
Let ¢ € Homp(Py, P1/N) given by ¢(z) = (¢ 3) + N and ¢(y) = (¥ 9) + N with
c,d € R. Define ¢ € Homp(Py, P1) as (z) = (4540) and p(y) = (~749).
Then ¢ = mp where 7 : P, — P;/N is the canonical projection. Hence, in the
exact sequence

— Hompg(Py, P) = Homg(P1, P, /N) — Ext' (P, N) — Ext* (P, P;)

T, is surjective and Extl(Pl,Pl) = 0 because P; is injective. This implies that
Ext'(P;,N) =0 and so N € P;-.

3. TILTING AND CLASSICAL TILTING TORSION THEORIES

Definition 3.1. Let (7,.F) be a (not necessarily hereditary) torsion theory in R-
Mod. Then (T, F) is a (classical) tilting torsion theory provided there is a (classical)
tilting module T such that 7 = T. In this case, T is called a (classical) tilting
torsion class.
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Recall that if M is a left R-module, the tosion theory generated by M is the pair
(Tars Far) where Foy = KerHomp(M, ) and Ty = {N | Homg(N, F) VF € Far}.
The class T is the least torsion class containing M. It follows that Gen(M) C Ty
for all module M. Now, if (T, F) is a tilting torsion theory, that is, 7 = T+ for some
tilting module T, then Gen(T) = T+ = 7. This implies that 77 = Gen(T) = T
and F = Fr. Thus, (T, F) is the torsion theory generated by T.

Theorem 3.2. A torsion class T in R-Mod is a tilting torsion class if and only if
T = Pt for some P T.

Proof. = If T is a tilting torsion class, then 7 = T for some tilting module 7.
Since T is tilting, T' € T.

< Suppose T = P+ for some P € T. Then, Gen(P) C T = PL. Hence P is a
partial tilting module. By Theorem there exists a tilting module T such that
T+ = P+ = 7. Thus, T is a tilting torsion class. O

The next result shows that, if P is a (classical) partial tilting module, but not a
(classical) tilting, then there are two different torsion theories determined by P.

Lemma 3.3. If P is a partial tilting module, then both Gen(P) and P+ are torsion
classes, the second one being a tilting torsion class.

Proof. By definition P~ is a torsion class. It follows from Theorem that P+
is a tilting torsion class. It just remains to prove that Gen(P) is closed under
extensions. Let B any module. Consider the exact sequence

0— trf(B) - B — B/trf(B) = 0.
Applying the functor Homp (P, ) to this sequence, we get
— Hompg(P, B) — Hompg (P, B/tr*(B)) — Ext'(P,tr"'(B)).

Since Gen(P) C P+, Ext' (P, tr”(B)) = 0. This implies that for all f € Homp (P, B/tr"'(B))
the can be lifted to a f € Hompg(P, B). But, f(P) C tr(B). Hence f = 0. Thus,
tr” (B/trP(B)) = 0. Thus tr”(_) is a radical and Gen(P) is closed under exten-
sions. O

Proposition 3.4. Let P be a (fin. gen.) module such that Gen(P) C P+. Then,
Gen(P) is a (classical) tilting torsion theory if and only if P is faithful and finendo.

Proof. = If Gen(P) = Gen(T) = T+ for some (classical) tilting module 7', then
P is faithful because T is faithful (Remark . Moreover, by Proposition
PX € T+ = Gen(P). Thus, P is finendo by Lemma

< Let P be a (fin. gen.) faithful and finendo module such that Gen(P) C P+.
By Lemma [1.23] (1), there exists an exact sequence 0 — R — P™ — P’ — 0. Let
M € Gen(P). By Lemma(f)’), P't C Gen(P) =. On the other hand, if M €
Gen(P), then Ext'(P", M) = 0. Lemma (2) implies that Ext'(P’, M) = 0.
Hence M € P'*. Put T = P@ P’. Then, Gen(P) = Gen(T) and T+ = P- NP+ =
P1 N Gen(P) = Gen(P). Hence Gen(P) = Gen(T) = T+ is a tilting torsion class.
Note that, if P is fin. gen. then so is 7T'. O

Definition 3.5. Let 7 be a class of modules A module P is T-projective if the
functor Homp (P, y preserves exactness of all sequences of the form 0 — L — M —
N — 0, where L, M, N € T.
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Remark 3.6. If Gen(P) C P+, then P is Gen(P)-projective. Indeed, let 0 — L —
M — N — 0 be an exact sequence with L, M, N € Gen(P). Applying the functor
Homp (P, ) to this sequence, we get

0 — Homp(P, L) — Homp(P, M) — Homg(P, N) — Ext'(P, L)
Since Gen(P) C P+, Ext'(P, L) = 0. Thus, P is Gen(P)-projective.

Corollary 3.7. A class of modules T is a (classical) tilting torsion class if and
only if T = Gen(P) for a (fin. gen.) faithful, finendo, and T -projective module.

Proof. = Suppose T = Gen(T) = T+ for some tilting module 7. Then, T is
faithful and finendo. By last remark, T' is T-projective.

< By Proposition it is enough to prove that Gen(P) C Pt. Let M €
Gen(P). Consider the sequence 0 - M — E(M) — E(M)/M — 0. Note that
M,E(M),E(M)/M € Gen(P) by Lemma Applying the functor Hompg(P, ),
we get

— Hompg (P, E(M)) — Hompg(P, E(M)/M) — Ext'(P, M) — Ext*(P, E(M)).

It follows that Ext! (P, M) = 0 because P is Gen(P)-projective and Ext!' (P, E(M)) =
0. Thus, M € P, 0

Let P be a partial tilting module. Let [Gen(P), P*] denote the interval of torsion
classes T such that Gen(P) C T C PL. The tilting torsion classes in this interval
are characterized as follows.

Lemma 3.8. Let P be a partial tilting module and let T be any module. The
following conditions are equivalent:

(a) T is a tilting module and P € Add(T);

(b) Gen(T) =T+ € [Gen(P), P1].

Proof. (a)=>(b) Since T is tilting, Gen(T) = T+ is a torsion class. Moreover,
Gen(P) C Gen(T) and T+ C P+ because P € Add(T).

(b)=(a) Gen(T) = T+ implies that T is a tilting module. By Lemma
P € Pres(T). Since Gen(T) C P+, P € Add(T) by Lemma O

Proposition 3.9. Let T1 and Ty be two tilting modules. The following conditions
are equivalent:
(a) T1 € Add(T>);
(b) T € Add(Ty);
(¢) Ty € Tst and Ty € T;
(d) Gen(Ty) = Gen(Ts).

Proof. (a)=(d) Since T is tilting and Ty € Add(7:), by Lemma Gen(Ty) C
Gen(Ty) C Ti-. This implies that Gen(T;) = Gen(73). (b)=>(d)is similar.

(d)=(a) and (b) follows from Lemma

(c)&(d) is clear because Gen(Ty) = Ti- and Gen(Ty) = Ts'. O

Example 3.10. Let K be a field. Consider the ring of lower triangular matrices
R = (¥ ) with coefficients in K. We have that pR = (£ 9)®(J ). The injective
hull of R is Mato(K) = (E5) @ (§ X). There are, up to isomprphism, two simple
R-modules. One is (§ %) with injective hull P; = (3 &) = (£ 9) and the other one
is P, := P1/({ %) which is injective because R is a left hereditary ring. Since R is
left Artinian, every injective R-module is a direct sum of injective hulls of simple
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modules, that is, a direct sum of direct sums of copies of P; and P,. Since P,
generates Po, Gen(P;) = J the class of all injective modules. On the other hand,
Pj- = R-Mod because P is projective. Hence P is a partial tilting module. Now,
let M € Ps- and let N be any module. Applying Homg(_, M) to the sequence
0— N — E(N)— E(N)/N — 0, we get

— Ext'(E(N)/N, M) — Ext'(E(N), M) — Ext*(N, M) — 0

We have that E(N) = PI(X) @ P2(Y) for some sets X and Y. Since M € P3- and
P = R-Mod, Ext'(E(N).M) = 0. Hence Ext'(N, M) = 0. This implies that M
is injective. Since always J C Ps-, then J = Ps-. The class Gen(P,) consist of all
semisimple injective modules. Thus, P, is a partial tilting module.

For what follows, we will need some facts on modules of finite length. We place
those results here for the convenience of the reader.

Theorem 3.11. Let M be an indecomposable modulo of finite length. Then,
Endg(M) is a local ringa and the noninvertible elements of Endr(M) are exactly
the nilpotent elements.

Theorem 3.12. Let M # 0. If M is Artinian or Noetherian, then there exist
indecomposable submodules My, ..., M,, of M such that M = @?:1 M;. Moreover,
if M has finite length, Endg(M;) is local for every 1 <i < mn.

Lemma 3.13. Let M be a module of finite length. If Gen(M) is a torsion class,
then there exists a direct summand T of M such that Gen(M) = Gen(T) C T+,

Proof. Since M has finite length, M = M; & --- & M, with M, idecomposable.
Renumbering if needed, there exists k& < n such that M; € Gen(My @ --- & M,,) for
all 1 <i<nand M; ¢ Gen(@P{M,; |k <j<nandi##j}) forall k <i<n. Put
T=M,®- - ® M,, then Gen(M) = Gen(T). Let k < £ < n. Suppose there is
N € Gen(M) with Ext'(M,, N) # 0. Set B = @{M; | k <i <nandi#(}. Then
T = M; @ B. Since Ext'(M;, N) # 0, there is a nontrivial extension 0 — N —
E — M; — 0. Hence E € Gen(M) = Gen(T') because Gen(M) is a torsion class.
There is a commutative diagram

)
T0 == M,” @ B
P J/((fi)z,g)
0 N E Y M, 0

Here f; = vpn;, where n; : My, — MZ(I) is the canonical inclusion. Then f; €
Endg(Mp) is not an isomorphism for all ¢ € I, because v does not split. Since
Endgr(M;) is local, f; € Rad(Endg(M,)) for alli € I. This implies that » . fi(M;)
Rad(Endg(M;))M,. Note that Rad(Endr(M,)) is nilpotent [10, Ex. 21.24], and
My =Y, filMg) + g (BW). This implies that M, = g (BY)) € Gen(B) by [10]
Proposition 23.16], which is a contradiction. Therefore, Gen(M) = Gen(T') and

Gen(M)C (| My=T".

k<t<n

N



16 MAURICIO MEDINA-BARCENAS

The next example shows that last lemma cannot be true if the module M has
infinite length.

Example 3.14. Let p € Z be a prime number. Consider R = Z and M =

D,,~0 Zpn- Let T, be the class of p-groups. Then Gen(M) = T, which is a torsion

class. Let 0 # T € T, be any p-group. It follows that E(T) = Z;{.? for some set X.

Then,
(X) (xX)
Ly~ o (ZP“) ~ 7% ~ g(T).
ZI(JX) Zp P

(X)

L3 . . .
Therefore, there is a monomorphism o : T' — ﬁ. Consider the following diagram:
P

0 VAR A T 0
. (X)
0 z§0 —>7{0 > 2 0
P

where the lower row is the canonical sequence and A is the pull-back of o and .
By [13| Lemma 7.29], the upper row is exact. Since i is an essential monomorphism,

the upper row is not a trivial extension. This implies that Extl(T, Z,(,X)) 2 0. Thus,
Gen(T) ¢ T+.
Theorem 3.15. Consider the following conditions for a torsion class T in R-Mod.
(1) T is a classic tilting torsion class.
(2) T is closed under direct products, it contains any injective module and
T = Gen(P) for a finitely generated module P.
(8) T = Gen(P) for a finitely generated, faithful and finendo module P.

Then, (1)=(2)=(3). In addition, if R is left Artinian, then the three conditions
are equivalent.

Proof. (1)=(2) Suppose T = Gen(P) = P is a classical torsion class. Since
T = P+, T is closed under direct products (Proposition and contains any
injective module. By hypothesis, P is finitely generated.

(2)=(3) By hypothesis, PX € Gen(P) = T for every set X. This implies that P
is finendo (Lemma[1.14)). Since E(R) € T = Gen(P), there exists an epimorphism
PX) — E(R) — 0 for some set X. Since R is projective, the inclusion R < E(R)
lifts to a monomorphism R — P(X). Then, P is faithful.

Now suppose R is left Artinian and assume (3). Then P is of finite length. By
Lemma [3.13] there is a direct summand T of P such that 7 = Gen(P) = Gen(T) C
T+, Since P is faithful and there exists an epimorphism 7X) — P for some set X,
T is also faithful. Now, for any set X, PX € Gen(P) because P is finendo. This
implies that 7% € Gen(P) = Gen(T). Thus, T is finendo. By Proposition T
is a classical tilting torsion class, proving (1). O

Remark 3.16. Note that either (1), (2) or (3) of Theorem does not imply that
P is of finite length. For, just consider a P = R for some non left Artinian ring R.

Definition 3.17. A bimodule 4Cp is faithfully balanced if the natural homomor-
phism A — Endp(C) and B — End4(C) are isomorphisms.
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For a nonclassical torsion class 7 = Gen(T) there is not a generalization of the
Brenner-Butler Theorem, that is, there is not an equivalence of categories between
T and Cogen(Homp(_,T)) = Ker(Tory(_,T)). This is because T is not finitely
generated. What can be done is to choose T as a classical partial tilting faith-
fully balanced module over its endomorphism ring such that 7 is equivalent to
Hompg (T, T).

Lemma 3.18. Let T be an R-module with endomorphism ring S = Endgr(T).
Consider the following conditions:
(1) T satisfies:
(T1o) There is an exact sequence 0 — R — T — T" — 0 such that T',T" €
add(T).
(T2) Ext™(T,T) = 0.
(2) T is faithfully balanced as S — R-bimodule and sT is a classical partial
tilting module.
(8) rT is faithful and there is t = (t1,...,t,) € T™ such that g {t1,....,tn) = sT
and T™ /Rt € add(T).
(4) rT satisfies (T1p).
Then (1)=(2)<(3)=(4). Moreover, if (3) is true, then every module M € Gen(T')
is T-reflexive, i.e., Hompg(T, M) ®s T = M canonically.

Proof. (1)=(2) Applying the functor Homp(_,T) to the sequence (T1p), we get a
sequence in S-Mod:

(3.1) 0 — Homg(T",T) — Homg(T’, R) — Homg(R,T) — Exts(T",T) = 0

where Ext(T",T) = 0 because (T2p). Now, we have that T/ <® T™ for some m >

0. Then Homg(T",T) <® Hompg(T™,T) = S™. Therefore, Homg(T",T),Homg(T",T) €
add(9S), that is, Homg(T’",T),Homg(T"”,T) are finitely generated projective S-

modules. Since ¢ Homp(R,T) = sT, sT satisfies (T3) and (T4). Now, we apply
Homg(_,T) to (3.1)) and we get the diagram:

T T 0

WR W Wt
0——=Homg(Homg(R,T),T)—=Homg(Homg(T’,T), T)—Homg(Homg(T",T), T)—Ext5(T, T)
Note that Homg(Hompg(R,T),T) = Endg(T) and wy and wr~ are isomorphisms
because T",T"” € add(T). Thus, wg is an isomorphism. This implies that T is

faithfully balanced. Also, we have that Extg(T,T) = 0.
(2)=(3) Since T satisfies (T3) and (T4), there is an exact sequence in S-Mod

0 K sn_® o 0

with K € add(S). Let {e;} be the canonical basis of S”. Then, sT = g (t1,...,tn)
where t; = ¢(e;) for 1 < i < n. Applying the functor Homg(_,T) to the sequence,
we get

*

0—>Homg(T, T)—">Homg(S™, T)—=Homg (K, T)—=Ext L (T, T) = 0

0 R " T /RE—— 50
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where t = ¢*(1) = (t1,...,tn). The first isomorphism is by hypothesis and the
second is the canonical isomorphism. Hence T" /Rt = Homg(K,T) € add(T).

(8)=(2) Since grT is faithful and T = g (t1,...,tn), Rt = R. Hence, there is an
exact sequence 0 R—‘s1Tn To 0, with Ty = T™/Rt. Applying
the functor Hompg(-,T') to the sequence, we get a sequence in S-Mod:

0 — Hompg(Tp, T) — Homp(T™, T) —— Homp(R,T) =g T.

Givent € T, there exist f1,..., f, € Ssuchthatt = Y"1, f;(¢;). Theni*(>"1, fi)(1) =
t. Thus, i* is surjective. Also, Ty € add(.S). Therefore, T satisfies (T3) and (T4).
Now, we apply Homg(_,T) and we get a commutative diagram in R-Mod,

0 R ™ Th 0

WR = l wrn =~ | wT,

0—>Endg(T)——=Homg(S", T)—Homg(Homg(Ty, T), T)—Ext* (T, T),

where wrn» and wr, are isomorphisms. Thus, wgr is an isomoprhism. Hence, T' is
faithfully balanced and Ext}(7,T) = 0. At the beginning we show (3)=(4).

For the last assertion, assume (3) and let M € Gen(T') and pys : Homp(T, M) ®s¢
T — M be the canonical homomorphim given by pa(¢ ® t) = ¢(t). Since M is
T-generated, each element m € M can be writing as a finite sum m = Y fi(¢;)
with f; : T — M. Asi pps (O fi ® t;) = m, that is, pas is surjective. Now, let us
prove that pys is injective. Given any element > ¢ ® t € Homg(T, M) ®g T, then

PRt=0®) ¢ilt) =) ¢pi@ti=) v @t

Hence, if v € Kerpy, then we can write u = Y. [ ¢ @ t;, ¢ = (P1,....,Pn) €
Hompg(T™, M) with ¢(f) = 0. Consider the following diagram:

¢

7" —m— M

| 7]

Tn/Rt_i) Tm7

where 7 is the canonical projection. Since ¢(t) = 0, then ¢ factors through 7"/ Rt.
Since T™/Rt € add(T'), there exists m > 0 such that 7" /Rt <% T™ and so there
exists a homomorphism gﬁ :T™ — M such that (ZBZ = ¢. Therefore, ¢ = ¢ =
pim = gZA)(sji) where (s;;) a matrix of m x n with s;; € S. Let n; : T — T™ be the
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canonical inclusion. Hence

UZZ@@Q
i—1

n m .
=2 | 2mdsii | @t
i=1 \j=1

Thus, pys is injective. O

The following examples show that the implications (3)=-(1) and (4)=(3) are
not true in general.

Example 3.19. Let K be a field.
(i) Consider the ring R = (KISN) ) and the idempotents €, = (§ ) and ¢, =

Endgr(M) = (HOmR(Ml,Mz) Endgr(M>)

(39). Then,

K 0 0 0
R: RGa @Réb = (K(N) O) @ (0 K) .

Let e; be the first element in the canonical basis of K™, Put § =
R(28) = (k% 0) Then S = Re,. Set My = Req, My = Re,/S and
M = My ® Ms. Then, there is an exact sequence:

0= M ®Re,=R— M = M — 0.

This implies that M satisfies the condition (4) of Lemma and M is
finitely presented, since M; is a finitely generated projective R-module. On
the other hand,

Endg(M,) HomR(Mz’M1)> = @ E dO(M >>'
nar 2

Since the dimension over K of M; is infinite, M cannot be finitely generated
over its endomorphism ring. Thus, M does not satisfy the condition (3) of
Lemma 318

Let R be the ring of 3 x 3 lower triangular matrices with coefficients in K.
Then R = Req1 @ Rey @ Res where

100 00 0 00 0
a=[000]e={010]e=[00o0
00 0 00 0 00 1
000 000
Then Rad(Re;) = (ﬁ 0 8) and Soc(Re;) = (288)' Set U = Rey/ Soc(Rey),

T = Rey®Res®Rer / Rad(Rer) and M = TdU. Then T is a tilting module,
dimg (U) < oo and U € Gen(T). It follows from [6, Proposition 8] that M
satisfies the condition (3) of Lemma There is a canonical, non trivial,



20 MAURICIO MEDINA-BARCENAS

extension 0 — Rez — Re; — U — 0, because Soc(Re1) = Res. This im-
plies that there is a non trivial extension of T' by U. Thus, Extl(U7 T)#0
and so Ext'(M, M) # 0. That is, M does not satisfy the condition (1) of
Lemma [3.T8

Proposition 3.20. IfT is a tilting module, then there exists a cardinal k such that
the tilting module T satisfies (T1g).

Proof. By (T1), there exists an exact sequence 0 — R — T/ — T" — 0 such that
T',T" € Add(T). Then, there are two cardinals #; and xy such that T <® T(%1)
and T” <® T(%2), Take k = max{xy, kz}. Thus, T",T" € add(T™*)). O

Corollary 3.21. Let T be a tilting torsion class in R-Mod. Then T is generated
by a tilting module T such that:
(1) if S = Endg(T) then T is a faithfully balanced (S — R)-bimodule and T is
a classical partial tilting module.
(2) T coincides with the class of T-reflexive R-modules, i.e.,

—®sT
Homp(T.T) =T
Hompg(T,—)

s an equivalence.
(8) Hompg(T,T) is a torsionfree class in S-Mod if and only if rT is classical
tilting.

Proof. Since Gen(T) = Gen(T*)) for any cardinal , by Proposition we can
assume that 7 = Gen(T) for a tilting module T satisfying (T1p) and (T2p).

(1) If follows from the condition (2) of Lemma

(2) By the condition (3) of Lemma [3.18] every M € Gen(T) is T-reflexive. On
the other hand, any T reflexive module is T-generated.

(3) = If Hompg(T,T) is a torsionfree class in S-Mod, then Hompg(T,7T) =
Cogen(S). The equivalence

—®sT
-
Cogen(S) =T
HOmR(T7—)
implies that T is finitely generated by [15, Theorem 1].
<« Since T is finitely generated and we have the equivalence

—®sT
Homp(T,T) =T
Hompg(T,—)
by |12, Theorem 3.1], Hompg (T, T) = Cogen(S). Thus, Hompg(7T,T) is a torsionfree
class. 0

4. EXERCISES

(1) Prove Corollary

(2) [13, Ex. 7.26(ii)].

(3) Let M be a module. Prove that M~ is closed under extensions and contains
all injective modules.
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(4) Let M be a module. Prove that Gen(M) is closed under epimorphisms and
direct sums.

(5) Prove Remark and give an example of a no finitely generated small
module.

(6) A module T is classical tilting if and only if T satisfies (T1g), (T20), (T3)
and (T4).

(7) A module T is classical partial tilting if and only if T" satisfies (T2p), (T3)

and (T4). |9, IIL.6]

(8) Prove Remark
(9) Prove that every simple module over a left hereditary left Noetherian left

V-ring is a classical partial tilting module.

(10) Let R be a ring and M be a left R-module. The singular submodule of M
is defined as Z(M) = {m € M | ann(m) <°° R}. It is said that a module
is singular if Z(M) = M. Show that,

(a) Z(M/N) = M/N for all N < M.

(b) if R is a semiprime Noetherian ring Z(M) is equal to the torsion of M,
that is Z(M) = t(M) = {m € M | em = 0 for some regular element ¢ €
R}. |8l Ch. 7]

(11) Let R be a hereditary Noetherian V-ring. Using |2l Theorem 4] prove that
every torsion R-module is semisimple.

(12) In Example

(a) Prove that T = S @ E(R) is a tilting module.

(b) Find a reference for the sentence “E(R) is a flat non projective R-
module”.

(c) Prove that E(R)/R cannot be finitely generated.

(13) Let E be an injective module and ¢ : M — E be a monomorphism. Show
that if & : M — N is an essential monomorphism, then there exists a
monomorphism @ : N — E such that aa = ¢.

(14) In Example prove that:

(a) R is finite dimensional over R.

(b) Describe the lattice of left ideals of the ring R. |10, Proposition 1.7]

(c) Prove that R is a hereditary ring. (Hint: Prove that all the minimal
ideals of R are isomorphic)

(d) the left ideals I = (£9) and J = (2 2) are two-sided ideals and are
the only two maximal ideals of R. Conclude that there are only two
isomorphism classes of simple R-modules

(e) R is Artinian (use [10, Theorem 1.22])

(f) there is an isomorphism:

R/J=P/(RE)

and hence R/J is injective.
(g) T = Gen(P). (Hint: prove that P generates the injective hull of each
simple)

(15) Let r be a preradical, i.e., a subfunctor of the identity functor. Show that
if r is a radical, that is, » (M/r(M)) = 0 for all module M, then the class
Tr={M | r(M)= M} is closed under extensions.

(16) in Example

(a) Describe the lattice of left ideals of the ring R. |10, Proposition 1.7]
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(b) Prove that R is an Artinian hereditary ring. (Hint: Prove that all the
minimal ideals of R are isomorphic)

(17) [10, Ex. 21.24].

(18) In Example prove the equality Gen(M) = T,.

(19) Prove that the homomorphisms wr: and wp~ in the proof (1)=-(2) of
Lemma, are isomorphisms.

(20) Prove that the module Homp (M, M2) = K and Homp(Ms, M;) = 0 in
Example [3.19]i).

(21) Prove that the module 7" in Example ii) is a tilting module.

(22) In the proof (8)=, prove that Hompg(T,T) = Cogen(S).

(23) In the proof (3)«<, prove that Cogen(S) is a torsionfree class.

—
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