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Abstract. These notes were made during a graduate seminar at Benemérita

Universidad Autónoma de Puebla in Spring-2020. In the seminar, we studied
the paper [4].

1. Preliminaries

It is assumed that the reader is familiar with the left and right derived functors.
The functor Ext will play a central roll in this notes. The general background on
derived functors can be found in [13]. For convenience of the reader we will mention
some results which will be used along the manuscript.

Proposition 1.1. (1) If {Ak}k∈K is a family of modules, then there are nat-
ural isomorphisms, for all n > 0,

ExtnR

(⊕
k∈K

Ak, B

)
∼=
∏
k∈K

ExtnR(Ak, B).

(2) If {Bk}k∈K is a family of modules, then there are natural isomorphisms,
for all n > 0,

ExtnR

(
A,
∏
k∈K

Bk

)
∼=
∏
k∈K

ExtnR(A,Bk).

Proof. [13, Proposition 7.21 and 7.22]. □

Proposition 1.2. (1) A left R-module P is projective if and only if ExtnR(P,B) =
0 for every R-module B.

(2) A left R-module E is injective if and only if ExtnR(A,E) = 0 for every
R-module A.

Proof. (1) [13, Corollary 6.58 and Corollary 7.25].
(2) [13, Corollary 6.41 and Corollary 7.25]. □

Definition 1.3. Let A be a left R-module. The projective dimension of A is a less
or equal than n (pd(A) ≤ n), if there is a finite projective resolution

0 → Pn → · · · → P1 → P0 → A→ 0.

If no such finite resolution exists, then pd(A) = ∞; otherwise, pd(A) = n if n is the
length of a shortest projective resolution of A.

Proposition 1.4. The following are equivalent for a left R-module A.

(a) pd(A) ≤ n

(b) ExtkR(A,B) = 0 for all left R-modules B and all k ≥ n+ 1.
1
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Proof. [13, Proposition 8.6]. □

Definition 1.5. A ring R is said to be left hereditary if every left ideal is projective.

Proposition 1.6. The following conditions are equivalent for a ring R:

(a) R is left hereditary;
(b) Submodules of projective left R-modules are projective;
(c) Factor modules of injective left R-modules are injective.

Corollary 1.7. Let R be a left hereditary ring. Then pd(A) ≤ 1 for all left R-
module A.

Given two modules A and C, an extension of A by C is an exact sequence
0 → A → B → C → 0. The next Proposition shows that Ext1(C,A) detects the
nontrivial extensions of A by C.

Proposition 1.8. Every extension 0 → A → B → C → 0 splits if and only if
Ext1(C,A) = 0.

Proof. [13, Proposition 7.24 and Theorem 7.31]. □

I want to show the general idea of how from an extension of A by C we get an
element in Ext1(C,A) and vice-versa, all the details can be found in [13, Ch. 7, Sec.
2]. To get this we will need the constructions of pullback and pushout in modules.
Let us start with [α] ∈ Ext1(C,A). Taking an injective resolution

E 0 // A
η // E0

d0 // E−1

d−1 // E−2
//

of A and applying the functor Hom(C, ) to the reduced resolution EA we get the
complex:

Hom(C,EA) 0 // Hom(C,E0)
(C,d0) // Hom(C,E−1)

(C,d−1)//

Then Ext1(C,A) := H1(Hom(C,EA)) = Ker(C, d−1)/ Im(C, d0). This implies that
[α] ∈ Ext1(C,A) is represented by a morphism α : C → E−1 such that d−1α = 0.
Hence α(C) ⊆ Ker d−1 = Im d0. Therefore, there is a commutative diagram

0 // A //

1

��

M //

��

C //

α

��

0

0 // A
η
// E0

d0

// Im d0 // 0

whereM is the pullback of the angle given by α and d0. Thus, we have an extension
of A by C.

Remark 1.9. The construction that we just made, can be done using a projective
resolution of C. In this case, α : P1 → A and the extension is given by a pushout
(see [13, Theorem 7.30]).

Conversely, suppose that we have an extension 0 → A→ B → C → 0 of A by C.
Consider the injective resolution E of A. Then we have a morphism of complexes
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over the identity 1A:

0 // A //

1

��

B //

α0

��

C //

α1

��

0

α2

��
0 // A

η
// E0

d0

// E−1
d−1

// E−2

Hence d−1α1 = α20 = 0. This implies that α1 ∈ Ker(C, d−1). Thus, [α1] ∈
Ext1(C,A).

Lemma 1.10. Let 0 // A
i // B

ρ // C // 0 be an exact sequence and

let M be a module. Then the connection morphism ∂ : Hom(M,C) → Ext1(M,A)
is given by taking the pullback along ρ. That is, given f ∈ Hom(M,A), ∂(f)
corresponds to the extension:

0 // A
j //

1

��

L
π //

γ

��

M //

−f

��

0

0 // A
i
// B

ρ
// C // 0

Proof. We have to recall how the connection morphism was defined. Let us take
injective resolutions

E′ 0 // A
η′
// E′

0

d′
0 // E′

−1

d′
−1 // E′

−2
//

E′′ 0 // C
η′′
// E′′

0

d′′
0 // E′′

−1

d′′
−1 // E′′

−2
//

of A by C respectively. Using the dual version of the horseshoe lemma, we have an
injective resolution

E 0 // B
η // E0

d0 // E−1

d−1 // E−2
//

of B such that Ej = E′
j ⊕ E′′

j . Therefore, there is a commutative diagram:

0

��

0

��

0

��
0 // A

η′

��

i // B
σ0

||
η

��

ρ // C

η′′

��

// 0

0 // E′
0

ζ0 //

d′
0

��

E0
ξ0 //

d0

��

E′′
0

//

d′′
0

��

0

0 // E′
−1

ζ−1 //

d′
−1

��

E−1

ξ−1 //

d−1

��

E′′
−1

//

d′′
−1

��

0

0 // E′
−2

ζ−2 // E−2

ξ−2 // E′′
−2

// 0
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Applying the functor to the reduced resolutions, we get

0 // Hom(M,E′
0)

(M,ζ0) //

(M,d′
0)

��

Hom(M,E0)
(M,ξ0) //

(M,d0)

��

Hom(M,E′′
0 ) //

(M,d′′
0 )

��

0

0 // Hom(M,E′
−1)

(M,ζ−1)// Hom(M,E−1)
(M,ξ−1)// Hom(M,E′′

−1) // 0

Moreover, Ker(M,d′′0)
∼= Hom(M,C), where the isomorphism is given by η′′ ◦ .

Now, η : B → E0 is defined as η(b) = (σ0(b), η
′′ρ(b)) where σ0 : B → E′

0 is such that
σ0i = η′. Analogously, d0 : E0 → E−1 is defined as d0(x) = (σ1(x), d

′′
0ξ0(x)) where

σ1 : Coker η → E′
−1. Then ∂(f) = [α] ∈ Ext1(M,A) is given by the morphism

α ∈ Hom(M,E′
−1) such that α = ζ̂−1d0ξ0η

′′f where ξ0 : E′′
0 → E0 is defined as

ξ0(x) = (0, x) and ζ̂−1 : E−1 → E′
−1 is defined as ζ̂−1(x, y) = x. Set β = ζ̂−1d0ξ0η

′′.
Note that

βρ(b) = ζ̂−1d0(0, η
′′ρ(b)) = ζ̂−1(σ1(0, η′′ρ(b)), d

′′
0η

′′ρ(b))

= ζ̂−1(σ1(0, η′′ρ(b)), 0) = σ1(0, η′′ρ(b)).

On the other hand, d′0σ0(b) = ζ−1σ1(ζ0σ0(b)) = σ1(σ0(b), 0). Thus, we have the
following diagram

0 // A
j //

1

��

L
π //

σ0γ

��

M //

α

��

0

0 // A
η′
// E′

0

d′
0 // Im d′0 // 0.

Let us see that this diagram is commutative. Let a ∈ A. Then σ0γj(a) =
σ0γ(i(a), 0) = σ0(i(a)) = σ0(i(a)) = η′(a) = η′(1(a)). On the other hand, d′0σ0γ(b,m) =

d′0σ0(b) = σ1(σ0(b), 0) = −σ1(0, η′′ρ(b)) = −βρ(b). Since (b,m) ∈ L, ρ(b) =
−f(m). Then d′0σ0γ(b,m) = −βρ(b) = βf(m) = απ(b,m). This implies that
∂(f) = [α] ∈ Ext1(M,A) is the element which corresponds to the extension

0 // A
j // L

π // M // 0

□

Definition 1.11. Let M be an R-module. The Ext-orthogonal class of M is given
by

M⊥ = {RN | Ext1R(M,N) = 0}.

Definition 1.12. Given two R-modulesM and N , it is said that N isM -generated
if there exists an epimorphism ρ :M (X) → N for some set X. The class of modules
M -generated is denoted by Gen(M).

It is not difficult to see that the classM⊥ is closed under extensions and contains
all the injective R-modules by Proposition 1.2, and the class Gen(M) is closed under
direct sums and epimorphisms, for all modules M .

Definition 1.13. A moduleM is finendo ifM is finitely generated as module over
its endomorphism ring.

Lemma 1.14 (Lemma 1.5, [3]). Let M be a module. Then, MX ∈ Gen(M) for
every set X if and only if M is finendo.
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Proof. ⇒ Suppose that MM ∈ Gen(RM). Then, there exists an R-epimorphism
ρ : M (I) → MM for some set I. Let (xm)m∈M be the element in MM such that
xm = m. Hence, there exists (yx)i∈I ∈M (I) such that ρ((yi)i∈I) = (xm)m∈M . This
implies that there there is a finite subset F ⊆ I and homomorphisms ρi : M →
MM such that (xm)m∈M = ρ((yi)i∈I) =

∑
i∈F ρi(yi). For each m ∈ M , let πm

denote the canonical projection πm : MM → M and set fmi = πmρi ∈ EndR(M).
Therefore,

m = πm((xm)m∈M ) = πm

(∑
i∈F

ρi(yi)

)
=
∑
i∈F

(πmρi(yi)) =
∑
i∈F

fmi (yi),

for each m ∈M . Thus, M as module over EndR(M) is generated by {yi | i ∈ F}.
⇐ Let S = EndR(M) and suppose SM is generated by {y1, ..., yn}. Let X be

any set and (mx)x∈X ∈ MX . For each x ∈ X there exist fx1 , ..., f
x
n ∈ S such

that mx =
∑n

i=1 f
x
i (yi). Let ϕx : Mn → M be the homomorphism given by

ϕ(m1, ...,mn) =
∑n

i=1 f
x
i (mi) and let ϕ : Mn → MX be the homomorphism given

by ϕ(m1, ...,mn) = (ϕx(m1, ...,mn))x∈X . Consider the element (y1, ..., yn) ∈ Mn.
Then,

ϕ(y1, ..., yn) = (ϕx(y1, ..., yn))x∈X =

(
n∑

i=1

fxi (yi)

)
x∈X

= (mx)x∈X .

This implies that (mx)x∈X ∈ trM (MX). Thus, MX is M -generated. □

Lemma 1.15. Let T be an R-module. If Gen(T ) = T⊥, then Gen(T ) = Pres(T ).

Proof. Let M ∈ Gen(T ) and X = HomR(T,M). Then, there is an exact sequence

0 → K → T (X) ρ→M → 0. Applying the functor HomR(T, ), we get

// HomR(T, T
(X))

ρ∗ // HomR(T,M) // Ext1(T,K) // 0

Note that Ext1(T, T (X)) = 0, by hypothesis. We claim that ρ∗ is surjective. For,
consider h ∈ HomR(T,M). Let ηh : T → T (X) be the canonical inclusion. Then,
ρ∗(ηh)(t) = ρηh(t) = h(t). Thus ρ∗ is surjective and hence Ext1(T,K) = 0. This
implies that K ∈ T⊥ = Gen(T ). So, Gen(T ) ⊆ Pres(T ). We always have that
Pres(T ) ⊆ Gen(T ). □

Lemma 1.16. Let M and N be R-modules such that N ∈ Pres(M) and Gen(M) ⊆
N⊥. Then, N ∈ Add(M).

Proof. By hypothesis, there is an exact sequence 0 → K → M (X) → N → 0 with
K ∈ Gen(M). Since Gen(M) ⊆ N⊥, Ext1(N,K) = 0. This implies that the
sequence splits. Thus, N ∈ Add(M). □

Lemma 1.17. Let M be a left R-module. Then, M⊥ is closed under epimorphisms
if and only if pd(M) ≤ 1.

Proof. ⇒ There exists an exact sequence 0 → K → R(X) → M → 0 for some
set X. We claim that K is projective. Let N be any module. By Proposition
1.2, Ext1(R(X), N) = 0 = Ext2(R(X), N). It follows that there is an exact sequence
0 → Ext1(K,N) → Ext2(M,N) → 0, and so Ext1(K,N) ∼= Ext2(M,N). Let E(N)
denote the injective hull of N and consider the exact sequence 0 → N → E(N) →
E(N)/N → 0. Again by Proposition 1.2, Ext1(M,E(N)) = 0 = Ext2(M,E(N)).
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Therefore Ext1(M,E(N)/N) ∼= Ext2(M,N). Hence Ext1(M,E(N)/N) ∼= Ext1(K,N).
Since E(N) ∈M⊥, E(N)/N ∈M⊥ by hypothesis. Thus, Ext1(K,N) ∼= Ext1(M,E(N)/N) =
0. Since N was an arbitrary module, it follows that K is projective. Thus,
pd(M) ≤ 1.

⇐ Let N ∈ M⊥ and let ρ : N → L be an epimorphism. Set K = Ker ρ. There

is an exact sequence 0 → K → N
ρ→ L → 0. Applying the functor HomR(M, ) to

that sequence, we get an exact sequence

· · · → Ext1(M,N) → Ext1(M,L) → Ext2(M,K) → · · ·
It follows that Ext2(M,K) = 0 by Proposition 1.4 and Ext1(M,N) = 0 because
N ∈M⊥. Therefore, Ext1(M,L) = 0. Thus, L ∈M⊥. □

Corollary 1.18. Let T be a module. Then pd(M) ≤ 1 and Ext1(T, T (X)) = 0 for
any set X if and only if Gen(T ) ⊆ T⊥ and T⊥ is closed under epimorphisms.

Proof. By Lemma 1.17, T⊥ is closed under epimorphisms if and only if pd(T ) ≤ 1.
For any set X, Ext1(T, T (X)) = 0, that is T (X) ∈ T⊥. Therefore, Gen(T ) ⊆ T⊥.
Reciprocally, if Gen(T ) ⊆ T⊥, Ext1(T, T (X)) = 0. □

Definition 1.19. Let M be a left R-module. The module M is called small if the
functor HomR(M, ) commutes with direct sums canonically.

Remark 1.20. Every finitely generated module is small

Proposition 1.21 (Lemma 1.2, [14]). The following conditions are equivalent for
a module M .

(a) M is small and M⊥ is closed under direct sums and epimorphisms;
(b) M is finitely generated and pd(M) ≤ 1.

Proof. There exists an exact sequence

(1.1) 0 → K → R(X) →M → 0

for some set X. By Lemma 1.17, K is projective. It follows from [1] that K =⊕
α∈ΛKα is a direct sum of countable generated modulesKα. SetD =

⊕
α∈ΛE(Kα).

There is a canonical inclusion K ↪→ D. Since M⊥ is closed under direct sums,
Ext1(M,D) = 0. Applying HomR( , D) to the sequence (1.1), we get an epimor-
phism

· · · → HomR(R
(X), D) → HomR(K,D) → 0.

Therefore, there exists g : R(X) → D such that g|K = i.

0 // K //

i

��

R(X)

g
||

D

For each α ∈ Λ, let πα : D → E(Kα) and ρα : E(Kα) → E(Kα)/Kα be the
canonical projections, respectively, and set gα = ραπαg, that is, the composition

R(X) g //⊕
α∈ΛE(Kα)

πα // E(Kα)
ρα // E(Kα)/Kα

Now, define h : R(X) →
⊕

α∈ΛE(Kα)/Kα as h(x) = (gα(x))α∈Λ. Note that

gα(K) = 0 for each α, hence K ≤ Kerh. From (1.1), M ∼= R(X)/K. Therefore,
h induces a homomorphism h̄ ∈ HomR

(
M,
⊕

α∈ΛE(Kα)/Kα

)
. Since M is small,
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there exists a finite subset F ⊆ Λ such that Im h̄ ⊆
⊕

α∈F E(Kα)/Kα. Thus, Im g ⊆⊕
α∈F E(Kα) +

⊕
α∈ΛKα. Let π denote the projection of D onto

⊕
α/∈F E(Kα)

and let K denote
⊕

α/∈F Kα. If ḡ = πg, then ḡ ∈ HomR(R
(X),K). Since ḡ|K = id,

R(X) = Ker ḡ ⊕K. Set A = Ker ḡ ∩K =
⊕

α∈F Kα. It follows that

M = R(X)/K =
Ker ḡ +K

K
∼= Ker ḡ/A.

Since Ker ḡ is projective, by [1], Ker ḡ =
⊕

β∈Ξ is a direct sum of countable gener-
ated modules. Also, A is a direct sum of countable generated modules. Hence M
is direct sum of a countable generated module C and a projective module B,

M ∼= Ker ḡ/A =
⊕
β∈Ξ

Cα/
⊕
α∈F

Kα
∼= C ⊕B.

SinceM is small, B is countable generated. Thus,M is a small countable generated
module. Therefore M is finitely generated, by [14, Lemma 1.1].

⇐ By Lemma 1.17, M⊥ is closed under epimorphisms. Since M is finitely
generated, M is small. Now, let {Bi}i∈I be a family of modules in M⊥. It is not
difficult to see that, if M is small then Extn(M, ) commutes with direct sums for
all n > 0. Hence,

Ext1

(
M,
⊕
i∈I

Bi

)
∼=
⊕
i∈I

Ext1(M,Bi)

Since each Bi ∈ M⊥, Ext1(M,Bi) = 0. Therefore Ext1
(
M,
⊕

i∈I Bi

)
= 0. Thus,⊕

i∈I Bi ∈M⊥. □

Corollary 1.22. If M satisfies any of the conditions in Proposition 1.21, then M
is finitely presented.

Proof. Since M is finitely generated and pd(M) ≤ 1, there is an exact sequence

(1.2) 0 → P → R(n) →M → 0

with P projective. Since P is projective, P is a direct summand of a free module
R(Y ). Let j : P → R(Y ) be the canonical inclusion, let g : R(Y ) → E(R)(Y ) be the
canonical monomorphism and set f = gj. Since M⊥ is closed under direct sums,
E(R)(Y ) ∈M⊥ and so Ext1(M,E(R)(Y )) = 0. Thus, there is an exact sequence

0 → HomR(M,E(R)(Y )) → HomR(R
(n), E(R)(Y )) → HomR(P,E(R)(Y )) → 0.

This implies that f can be extended to a homomorphism f̂ : R(n) → E(R)(Y ). Let
πy : E(R)(Y ) → E(R) and ρy : R(Y ) → R be the canonical projections for each

y ∈ Y . Since R(n) is fin. gen. F = {y ∈ Y | πy f̂ ̸= 0} is finite. It follows that ρy
is the corestriction of πyg to R. Let y ∈ Y \ F . Then πy f̂ = 0 and so πyf = 0.

This implies that ρyj = πygj = πyf = 0. Hence P = Im j ⊆ R(F ) and so P is a
direct summand of a fin. gen. free module. Thus, P is fin. gen. and M is finitely
presented. □

Lemma 1.23. Let M be an R-module. If M is faithful and finendo, then

(1) there exists an exact sequence 0 → R
i→Mn →M ′ → 0 for some n > 0.

(2) for any module L, the induced homomorphism i∗ : HomR(M,L) → HomR(R,L)
is surjective if and only if L ∈ Gen(M).

(3) M ′⊥ ⊆ Gen(M).
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(4) M generates every injective module.

Proof. (1) Set S = EndR(M) and let {t1, ..., tn} be a set of generators of SM . Since
M is faithful, there is a monomorphism i : R → Mn given by i(r) = (rt1, ..., rtn).
Hence, we have the exact sequence

0 → R
i→Mn →Mn/R→ 0.

(2)⇒ Suppose i∗ : HomR(M
n, L) → HomR(R,L) is surjective and let l ∈ L.

Since HomR(R,L) ∼= L, there exists g ∈ HomR(M
n, L) such that gi(1) = l. Thus,

l ∈ trM (L) and so L ∈ Gen(M).
⇐ Applying HomR( , L) to the exact sequence, we get

0 → HomR(M
′, L) → HomR(M

n, L)
i∗→ HomR(R,L)

Let x ∈ L ∼= HomR(R,L). Since L ∈ Gen(M), there is an epimorphism M (Y ) → L
for some set Y . Making the inverse image of x, we have a homomorphism f :Mm →
L and (x1, ..., xm) ∈ Mm such that f(x1, ..., xm) = x. Since SM = ⟨t1, ..., tn⟩, for
each 1 ≤ i ≤ m there exists f i1, ..., f

i
n ∈ S such that xi =

∑n
j=1 f

i
j(tj). Define

α : Mn → Mm as α(y1, ..., yn) =
(∑n

j=1 f
1
j (yj), ...,

∑n
j=1 f

m
j (yj)

)
. Therefore,

α(t1, ..., tn) = (x1, ..., xm). This implies that ι∗(fα)(1) = fαι(1) = f(x1, ..., xm) =
x. Proving that i∗ is surjective.

(3) If L ∈M ′⊥, i.e. Ext1(M ′, L) = 0, then i∗ is surjective. Thus, M ∈ Gen(P ).
(4) By (1), there is a monomorphism i : R→Mn. Let E be an injective module

and ϕ : R(X) → E be an epimorphism. Then ϕ can be extended to an epimorphism
ϕ : (Mn)(X) → E. Thus, E ∈ Gen(M). □

2. Tilting Modules

Definition 2.1. A left R-module T is tilting if satisfies the following conditions:

(T1) There is an exact sequence 0 → R → T ′ → T ′′ → 0 such that T ′, T ′′ ∈
Add(T ).

(T2) Ext1(T, T (X)) = 0 for any set X.
(T3) pd(T ) ≤ 1.

If, moreover, T satisfies the condition

(T4) T is finitely presented,

then T is a classical tilting module. A module T is a classical partial tilting module
provided (T2),(T3) and (T4) hold true.

Proposition 2.2. (1) A left R-module T is tilting if and only if Gen(T ) = T⊥.
(2) A left R-module P is classical partial tilting if and only if P is small,

Gen(P ) ⊆ P⊥ and P⊥ is a torsion class.
(3) A left R-module T is classical tilting if and only if T is (self-) small and

Gen(T ) = T⊥.

Proof. (1) ⇒ Suppose, T is a tilting module. Then, Gen(T ) ⊆ T⊥ by Corollary

1.18. Now, by (T1), there is an exact sequence 0 → R
α→ T ′ → T ′′ → 0 with

T ′, T ′′ ∈ Add(T ). Let M ∈ T⊥. Then Ext1(T ′′,M) = 0 (see Proposition 1.1).
Hence, there is a exact sequence

0 // HomR(T
′′,M) // HomR(T

′,M)
α∗
// HomR(R,M) // 0.
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Since HomR(R,M) ∼= M , this implies that for each m ∈ M , there exists g ∈
HomR(T

′,M) such that g(α(1)) = m. Therefore, M is T -generated.
⇐ Since Gen(T ) = T⊥, T⊥ is closed under direct sums and epimorphisms. This

implies that Ext1(T, T (X)) = 0 for any set X and pd(M) ≤ 1 by Lemma 1.17.
Since E(R) ∈ Gen(T ), there is an epimorphism ρ : T (X) → E(R) for some set X.
Consider i : R→ E(R) the canonical inclusion, then there exists a monomorphism
j : R → T (X) such that ρj = i. This implies that T is faithful, i.e., Ann(T ) = 0.
On the other hand, since Ext1(T, T ) = 0, by Proposition 1.1, Ext1(T, TY ) = 0 for
any set Y . That is TY ∈ T⊥ = Gen(T ) for any set Y , thus T is finendo by Lemma
1.14. Set S = EndR(T ) and let {t1, ..., tn} be a set of generators of ST . By Lemma
1.23.(1), there is an exact sequence

(2.1) 0 → R
ι→ Tn → Tn/R→ 0.

Therefore Tn/R ∈ Gen(T ) = Pres(T ) = T⊥ by Lemma 1.15. This implies that
there is an exact sequence

(2.2) 0 → L→ T (X) → Tn/R→ 0

with L ∈ Gen(T ) = T⊥. Hence, applying HomR( , L) to the sequence (2.1), we get

→ HomR(T
n, L)

ι∗→ HomR(R,L) → Ext1(Tn/R,L) → 0,

because Ext1(T, L) = 0. By Lemma 1.23.(2), ι∗ is surjective. This implies that
Ext1(Tn/R,L) = 0. Hence, the sequence (2.2) splits by Proposition 1.8 and we get
condition (T1). Thus, T is a tilting module.

(2) ⇒ It follows from Proposition 1.21 that T is small and P⊥ is closed under
direct sums and epimorphisms. Hence P⊥ is a torsion class. Since P⊥ is closed
under epimorphisms and by (T2), Gen(P ) ⊆ P⊥.

⇐. By Corollary 1.22, P is finitely presented and by Proposition 1.21, pd(P ) ≤ 1.
Since Gen(P ) ⊆ P⊥, Ext1(T, T (X)) = 0 for any set X.

(3) ⇒ By (1), Gen(T ) = T⊥. Since T is fin. pres., T is small.
⇐ By (1), T is a tilting module. Since Gen(T ) = T⊥, T⊥ is a torsion class. It

follows by Corollary 1.22 that T is finitely presented. □

Remark 2.3. Note that the proof of (1) of last Proposition shows that every tilting
module is faithful and finendo.

The Proposition 2.2, suggest the following generalization of classical partial tilt-
ing module.

Definition 2.4. A left R-module P is a partial tilting module if Gen(P ) ⊂ P⊥ and
P⊥ is a torsion class.

Remark 2.5. • Classical tilting module if and only if tilting and small (or just
fin. gen.).

• Classical partial tilting module if and only if partial tilting and small (or
just fin. gen.).

• Any direct sum of copies of a (partial) tilting module is a (partial) tilting
module. (This is something which does not happen in the classical case)

A classical partial tilting module is defined as a finitely presented module satis-
fying (T2) and (T3). Every partial tilting module P satisfies conditions (T2) and
(T3) but next example shows that conditions (T2) and (T3) are not sufficient for
P to be partial tilting.
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Example 2.6. Let R = Z and P = ZQ. Since R is a hereditary ring, pd(P ) ≤ 1.
Moreover, Ext1(P, P (X)) = 0 for any set X because R is Noetherian. Thus, P
satisfies (T2) and (T3). Note that Gen(P ) consists of all divisible groups. On the
other hand P⊥ = {G | Ext1(Q, G) = 0} is the class of cotorsion goups which is
not a torsion class because is not closed under direct sums. For, consider a prime
number p and the abelian group G =

⊕
n>0 Zpn . It follows from [7, Corollary 54.4]

that each Zpn is a cotorsion group but G is not. Note that P⊥ is closed under
epimorfisms (Lemma 1.17).

Clearly a summand of a classical tilting module is a classical partial tilting mod-
ule. The converse is not true in general.

Example 2.7. Let k be a universal differential field of characteristic 0 with dif-
ferentiation D. Denote by R = k[y;D] the ring of differential polynomials of one
indeterminate y over k. In [5, Theorem 1.4], it is proved that R is a left and
right principal ideal domain. Hence R is Noetherian and hereditary. Moreover R
has only one simple left R-module S up to isomorphism which is injective. Un-
der this hypothesis is not difficult to prove that S is a classical partial tilting R-
module. Suppose that there exists a classical tilting module T such that S ≤⊕ T .
If T is not injective, E(T )/T is nonzero torsion (singular) R-module. It follows
from [2, Theorem 4] that every torsion (singular) module is semisimple. Thus
E(T )/T is semisimple and so E(T )/T ∼= S(X) for some set X. Therefore there ex-
ists a split monomorphism ϕ : S → E(T )/T . Applying HomR(S, ) to the sequence
0 → T → E(T ) → E(T )/T → 0 we get

// HomR(S,E(T ))
π∗ // HomR(S,E(T )/T ) // Ext1(S, T ) // 0

where π : E(T ) → E(T )/T is the canonical projection. If there exists 0 ̸= ψ ∈
HomR(S,E(T )) such that ϕ = π∗(ψ) = πψ, then S ∼= ψ(S) ≤⊕ E(T ) and 0 ̸=
ϕ(S) = πψ(S). This implies that ψ(S) ∩ T = 0 and so ψ(S) = 0 which is a
contradiction. Thus, ϕ /∈ Imπ∗. Therefore Ext

1(S, T ) ̸= 0 which cannot be because
T is tilting. Hence T is injective and finitely generated. By [2, Corollary 6], T
is semisimple and so T ∼= S(X) for some set X. Therefore the condition (T1)
implies that R is semisimple, contradiction. Thus, S cannot be a direct summand
of a classical tilting R-module. Nevertheless, S is a direct summand of the tilting
module T = S ⊕ E(R). By [8, Corollary 7.12], E(R) is isomorphic to the skew
field of fractions of R. Hence E(R) is a flat non projective R-module. It follows
from [11, Theorem 4.30] that E(R) is not finitely generated and so T is not a
classical tilting module. In fact T does not satisfies condition (T10). For, suppose

that there exist n,m ∈ N and an exact sequence 0 → R
ν→ T (m) → T ′ → 0

with T ′ ≤⊕ T (n). Since T is injective, ν can be extended to a monomorphism
ν′ : E(R) → T (m). Hence ν′(E(R))/ν(R) ≤ T (m)/ν(R) ∼= T ′. Thus T ′ contains a
copy of E(R)/R which is torsion and hence semisimple. Then, E(R)/R ∼= S(I) for
some infinite set I because E(R)/R is not finitely generated. Therefore,

S(I) ↪→ Soc(T ′) ≤ Soc(T (n)) = S(n),

contradiction. Note that P is also a direct summand of E(R) ⊕ E(R)/R which is
tilting by the next proposition.

Proposition 2.8. Let R be a left hereditary left Noetherian ring. Then T =
E(R)⊕ E(R)/R is a tilting module.
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Proof. Since R is left hereditary, T is injective and pd(T ) ≤ 1. Moreover, T (X) is
injective for any set X. Hence, Ext1(T, T (X)) = 0 for any set X. We have an exact
sequence 0 → R → E(R) → E(R)/R → 0 with E(R), E(R)/R ∈ Add(T ). Thus, T
is a tilting module. □

Lemma 2.9. Let P be a module satisfying (T2) and (T3).

(1) Then there is a module T such that P is a summand of T , Gen(P ) ⊆ P⊥ =
T⊥ ⊆ Gen(T ), and T satisfies (T1), (T3) and Ext1(T, T ) = 0.

(2) Let T be as in (1). Then P is partial tilting if and only if T is tilting.

Proof. (1) Let {αi}i∈I be a set of generators of Ext1(P,R). Each αi corresponds
to an extension of R by P , that is, 0 → R → Mi → P → 0 for all i ∈ I.
Taking the direct sum over I of this sequences, we get an exact sequence 0 →
R(I) j→

⊕
i∈I Mi → P (I) → 0. Let h : R(I) → R be the homomorphism given by

h((ri)i∈I) =
∑

i∈I ri. Taking the push-out of j and h, we get a diagram with exact
rows

0 // R //� _

��

Mi
//

� _

��

P //� _

��

0

0 // R(I) j //

h

��

⊕
i∈I Mi

//

��

P (I) //

1

��

0

0 // R // P0
// P (I) // 0.......(⋆)

This implies that P ∈ Gen(P0). Applying the functor HomR(P, ) to (⋆), we get
the exact sequence

// HomR(P, P
(I))

∂ // Ext1(P,R) // Ext1(P, P0) // Ext1(P, P (I)).

Since P satisfies (T2), Ext1(P, P (I)) = 0. By construction ∂ is surjective (see
Lemma 1.10) and hence Ext1(P, P0) = 0. Thus, P0 ∈ P⊥. Let M ∈ P⊥ and we
apply HomR( ,M) to (⋆).

→ HomR(P0,M)
i∗→ HomR(R,M) → Ext1(P (I),M) → Ext1(P0,M) → Ext1(R,M)

Since M ∈ P⊥, Ext1(P (I),M) = 0 and Ext1(R,M) = 0 because R is projec-
tive. Therefore, i∗ is surjective and Ext1(P0,M) = 0. This implies that M is
P0-generated and so M ∈ P⊥

0 . Thus, P⊥ ⊆ Gen(P0)∩P⊥
0 . Put T = P ⊕P0. Then

T⊥ = P⊥ ∩ P⊥
0 = P⊥. Since P ∈ Gen(P0), Gen(T ) = Gen(P0). It follows that

T⊥ = P⊥ ⊆ Gen(P0) = Gen(T ). Also, note that Ext1(P, P ) = 0 by hypothesis,
Ext1(P, P0) = 0 because P0 ∈ P⊥, Ext1(P0, P ) = 0 because P⊥ ⊆ Gen(P0) ∩ P⊥

0

and Ext1(P0, P0) = 0 because P0 ∈ P⊥ ⊆ Gen(P0) ∩ P⊥
0 . Thus, Ext1(T, T ) = 0.

By (⋆), T satisfies (T1). Let M be any module. Applying HomR( ,M) to (⋆), for
n ≥ 2, we get

→ Extn−1(R,M) → Extn(P (I),M) → Extn(P0,M) → Extn(R,M) → .

Since R is projective, Extn(P (I),M) ∼= Extn(P0,M). Since P satisfies (T3),
Extn(P (I),M) = 0. This impliesthat Extn(P0,M) = 0 for all n ≥ 2 and all module
M , that is, pd(P0) ≤ 1. Thus, T satisfies (T3).
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(2) Let T be as in (1). Suppose P is partial tilting. By hypothesis, T ∈ T⊥ =
P⊥. Therefore Gen(T ) ⊂ T⊥ = P⊥ ⊆ Gen(T ). By Proposition 2.2, T is a tilting
module. Reciprocally, if T is tilting, P⊥ = T⊥ = Gen(T ) by Proposition 2.2. This
implies that P⊥ is a torsion class. By hypothesis, Gen(P ) ⊆ P⊥. Thus, P is partial
tilting. □

Theorem 2.10. Let P be a left R-module. Then, P is a partial tilting module
if and only if P is a direct summand of a tilting module T such that T⊥ = P⊥.
Moreover, T can be chosen so that T ∼= P ⊕ T .

Proof. ⇒ There is a tilting module T satisfying the conditions in Lemma 2.9. Put
T = (T ⊕ P )(ℵ0). Since P is a direct summand of T , Gen(T ) = Gen(T ). Also,

T⊥ = T
⊥

because P⊥ = T⊥. Therefore T
⊥

= Gen(T ), that is, T is a tilting

module. Note that T ∼= P ⊕ T and P⊥ = T
⊥
.

⇐ Suppose P is a direct summand of a tilting module T with T⊥ = P⊥. Then
Gen(P ) ⊆ Gen(T ) = T⊥ = P⊥. Since P⊥ = T⊥ = Gen(T ), P⊥ is a torsion class.
Thus, P is a partial tilting module. □

We have that, if P is partial tilting module, there exists a module C such that
T = P ⊕ C is a tilting module and T and P have the same Ext-orthogonal class.
Sometimes, C is called the Bongartz complement of P . Nevertheless, P can be,
at the same time, a direct summand of another tilting module T ′ with different
Ext-orthogonal class

Example 2.11. Let R be the subring of Mat2(C) given by {( a 0
b c ) | a ∈ R b, c ∈ C}.

Hence R is a finite dimensional hereditary R-algebra. Consider P = E(R) =
Mat2(C). By Proposition 2.8, T ′ = P ⊕ P/R is a (classical) tilting module and so
P is a (classical) partial tilting module. We have that

I = Gen(P ) = Gen(T ′) = T ′⊥ ⊆ P⊥,

where I is the class of injective R-modules. We claim that T ′⊥ ̸= P⊥. Put N =
{( a 0

b 0 ) | a ∈ R b ∈ C} = R ( 1 0
0 0 ) which is a direct summand of R. We have that

RP = {( a 0
b 0 ) | a, b ∈ C} ⊕ {( 0 d

0 c ) | c, d ∈ C} and let P1 and P2 denote these direct

summands respectively. Hence P1 = E(N), and P/R = P1⊕P2

N⊕N ′
∼= P1

N ⊕ P2

N ′ . Note

that P1
∼= P2. We claim that N ∈ P⊥\T ′⊥, that is N ∈ P⊥

1 \Gen(T ′). Since N is
not injective, N /∈ Gen(T ′). Write P1 = Rx + Ry with x = ( 1 0

0 0 ) and y = ( i 0
0 0 ).

Let ϕ ∈ HomR(P1, P1/N) given by ϕ(x) = ( ci 0
0 0 ) +N and ϕ(y) = ( di 0

0 0 ) +N with
c, d ∈ R. Define φ ∈ HomR(P1, P1) as φ(x) =

(
d+ci 0
0 0

)
and φ(y) =

(−c+di 0
0 0

)
.

Then ϕ = πφ where π : P1 → P1/N is the canonical projection. Hence, in the
exact sequence

→ HomR(P1, P1)
π∗→ HomR(P1, P1/N) → Ext1(P1, N) → Ext1(P1, P1)

π∗ is surjective and Ext1(P1, P1) = 0 because P1 is injective. This implies that
Ext1(P1, N) = 0 and so N ∈ P⊥

1 .

3. Tilting and classical tilting torsion theories

Definition 3.1. Let (T ,F) be a (not necessarily hereditary) torsion theory in R-
Mod. Then (T ,F) is a (classical) tilting torsion theory provided there is a (classical)
tilting module T such that T = T⊥. In this case, T is called a (classical) tilting
torsion class.
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Recall that if M is a left R-module, the tosion theory generated by M is the pair
(TM ,FM ) where FM = KerHomR(M, ) and TM = {N | HomR(N,F ) ∀F ∈ FM}.
The class TM is the least torsion class containing M . It follows that Gen(M) ⊂ TM
for all moduleM . Now, if (T ,F) is a tilting torsion theory, that is, T = T⊥ for some
tilting module T , then Gen(T ) = T⊥ = T . This implies that TT = Gen(T ) = T
and F = FT . Thus, (T ,F) is the torsion theory generated by T .

Theorem 3.2. A torsion class T in R-Mod is a tilting torsion class if and only if
T = P⊥ for some P ∈ T .

Proof. ⇒ If T is a tilting torsion class, then T = T⊥ for some tilting module T .
Since T is tilting, T ∈ T .

⇐ Suppose T = P⊥ for some P ∈ T . Then, Gen(P ) ⊆ T = P⊥. Hence P is a
partial tilting module. By Theorem 2.10 there exists a tilting module T such that
T⊥ = P⊥ = T . Thus, T is a tilting torsion class. □

The next result shows that, if P is a (classical) partial tilting module, but not a
(classical) tilting, then there are two different torsion theories determined by P .

Lemma 3.3. If P is a partial tilting module, then both Gen(P ) and P⊥ are torsion
classes, the second one being a tilting torsion class.

Proof. By definition P⊥ is a torsion class. It follows from Theorem 3.2 that P⊥

is a tilting torsion class. It just remains to prove that Gen(P ) is closed under
extensions. Let B any module. Consider the exact sequence

0 → trP (B) → B → B/trP (B) → 0.

Applying the functor HomR(P, ) to this sequence, we get

→ HomR(P,B) → HomR

(
P,B/trP (B)

)
→ Ext1(P, trP (B)).

Since Gen(P ) ⊆ P⊥, Ext1(P, trP (B)) = 0. This implies that for all f ∈ HomR

(
P,B/trP (B)

)
the can be lifted to a f̄ ∈ HomR(P,B). But, f̄(P ) ⊆ trP (B). Hence f = 0. Thus,
trP

(
B/trP (B)

)
= 0. Thus trP ( ) is a radical and Gen(P ) is closed under exten-

sions. □

Proposition 3.4. Let P be a (fin. gen.) module such that Gen(P ) ⊆ P⊥. Then,
Gen(P ) is a (classical) tilting torsion theory if and only if P is faithful and finendo.

Proof. ⇒ If Gen(P ) = Gen(T ) = T⊥ for some (classical) tilting module T , then
P is faithful because T is faithful (Remark 2.3). Moreover, by Proposition 1.1,
PX ∈ T⊥ = Gen(P ). Thus, P is finendo by Lemma 1.14.

⇐ Let P be a (fin. gen.) faithful and finendo module such that Gen(P ) ⊆ P⊥.
By Lemma 1.23.(1), there exists an exact sequence 0 → R → Pn → P ′ → 0. Let
M ∈ Gen(P ). By Lemma 1.23.(3), P ′⊥ ⊆ Gen(P ) =. On the other hand, if M ∈
Gen(P ), then Ext1(Pn,M) = 0. Lemma 1.23.(2) implies that Ext1(P ′,M) = 0.
HenceM ∈ P ′⊥. Put T = P ⊕P ′. Then, Gen(P ) = Gen(T ) and T⊥ = P⊥∩P ′⊥ =
P⊥ ∩Gen(P ) = Gen(P ). Hence Gen(P ) = Gen(T ) = T⊥ is a tilting torsion class.
Note that, if P is fin. gen. then so is T . □

Definition 3.5. Let T be a class of modules A module P is T -projective if the
functor HomR(P, ) preserves exactness of all sequences of the form 0 → L→M →
N → 0, where L,M,N ∈ T .
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Remark 3.6. If Gen(P ) ⊆ P⊥, then P is Gen(P )-projective. Indeed, let 0 → L →
M → N → 0 be an exact sequence with L,M,N ∈ Gen(P ). Applying the functor
HomR(P, ) to this sequence, we get

0 → HomR(P,L) → HomR(P,M) → HomR(P,N) → Ext1(P,L)

Since Gen(P ) ⊆ P⊥, Ext1(P,L) = 0. Thus, P is Gen(P )-projective.

Corollary 3.7. A class of modules T is a (classical) tilting torsion class if and
only if T = Gen(P ) for a (fin. gen.) faithful, finendo, and T -projective module.

Proof. ⇒ Suppose T = Gen(T ) = T⊥ for some tilting module T . Then, T is
faithful and finendo. By last remark, T is T -projective.

⇐ By Proposition 3.4, it is enough to prove that Gen(P ) ⊆ P⊥. Let M ∈
Gen(P ). Consider the sequence 0 → M → E(M) → E(M)/M → 0. Note that
M,E(M), E(M)/M ∈ Gen(P ) by Lemma 1.23. Applying the functor HomR(P, ),
we get

→ HomR(P,E(M)) → HomR(P,E(M)/M) → Ext1(P,M) → Ext1(P,E(M)).

It follows that Ext1(P,M) = 0 because P is Gen(P )-projective and Ext1(P,E(M)) =
0. Thus, M ∈ P⊥. □

Let P be a partial tilting module. Let [Gen(P ), P⊥] denote the interval of torsion
classes T such that Gen(P ) ⊆ T ⊆ P⊥. The tilting torsion classes in this interval
are characterized as follows.

Lemma 3.8. Let P be a partial tilting module and let T be any module. The
following conditions are equivalent:

(a) T is a tilting module and P ∈ Add(T );
(b) Gen(T ) = T⊥ ∈ [Gen(P ), P⊥].

Proof. (a)⇒(b) Since T is tilting, Gen(T ) = T⊥ is a torsion class. Moreover,
Gen(P ) ⊆ Gen(T ) and T⊥ ⊆ P⊥ because P ∈ Add(T ).

(b)⇒(a) Gen(T ) = T⊥ implies that T is a tilting module. By Lemma 1.15,
P ∈ Pres(T ). Since Gen(T ) ⊆ P⊥, P ∈ Add(T ) by Lemma 1.16. □

Proposition 3.9. Let T1 and T2 be two tilting modules. The following conditions
are equivalent:

(a) T1 ∈ Add(T2);
(b) T2 ∈ Add(T1);
(c) T1 ∈ T⊥

2 and T2 ∈ T⊥
1 ;

(d) Gen(T1) = Gen(T2).

Proof. (a)⇒(d) Since T2 is tilting and T1 ∈ Add(T2), by Lemma 3.8 Gen(T1) ⊆
Gen(T2) ⊆ T⊥

1 . This implies that Gen(T1) = Gen(T2). (b)⇒(d)is similar.
(d)⇒(a) and (b) follows from Lemma 3.8.
(c)⇔(d) is clear because Gen(T1) = T⊥

1 and Gen(T2) = T⊥
2 . □

Example 3.10. Let K be a field. Consider the ring of lower triangular matrices
R = (K 0

K K ) with coefficients inK. We have that RR = (K 0
K 0 )⊕( 0 0

0 K ). The injective
hull of R is Mat2(K) = (K 0

K 0 )⊕ ( 0 K
0 K ). There are, up to isomprphism, two simple

R-modules. One is ( 0 0
0 K ) with injective hull P1 = ( 0 K

0 K ) ∼= (K 0
K 0 ) and the other one

is P2 := P1/ ( 0 0
0 K ) which is injective because R is a left hereditary ring. Since R is

left Artinian, every injective R-module is a direct sum of injective hulls of simple



SEMINAR ON “TILTING MODULES AND TILTING TORSION THEORIES” 15

modules, that is, a direct sum of direct sums of copies of P1 and P2. Since P1

generates P2, Gen(P1) = I the class of all injective modules. On the other hand,
P⊥
1 = R-Mod because P1 is projective. Hence P1 is a partial tilting module. Now,

let M ∈ P⊥
2 and let N be any module. Applying HomR( ,M) to the sequence

0 → N → E(N) → E(N)/N → 0, we get

→ Ext1(E(N)/N,M) → Ext1(E(N),M) → Ext1(N,M) → 0

We have that E(N) = P
(X)
1 ⊕ P

(Y )
2 for some sets X and Y . Since M ∈ P⊥

2 and

P⊥
1 = R-Mod, Ext1(E(N).M) = 0. Hence Ext1(N,M) = 0. This implies that M

is injective. Since always I ⊆ P⊥
2 , then I = P⊥

2 . The class Gen(P2) consist of all
semisimple injective modules. Thus, P2 is a partial tilting module.

For what follows, we will need some facts on modules of finite length. We place
those results here for the convenience of the reader.

Theorem 3.11. Let M be an indecomposable modulo of finite length. Then,
EndR(M) is a local ringa and the noninvertible elements of EndR(M) are exactly
the nilpotent elements.

Theorem 3.12. Let M ̸= 0. If M is Artinian or Noetherian, then there exist
indecomposable submodules M1, ...,Mn of M such that M =

⊕n
i=1Mi. Moreover,

if M has finite length, EndR(Mi) is local for every 1 ≤ i ≤ n.

Lemma 3.13. Let M be a module of finite length. If Gen(M) is a torsion class,
then there exists a direct summand T of M such that Gen(M) = Gen(T ) ⊆ T⊥.

Proof. Since M has finite length, M = M1 ⊕ · · · ⊕Mn with Mi idecomposable.
Renumbering if needed, there exists k ≤ n such that Mi ∈ Gen(Mk ⊕ · · · ⊕Mn) for
all 1 ≤ i ≤ n and Mi /∈ Gen(

⊕
{Mj | k ≤ j ≤ n and i ̸= j}) for all k ≤ i ≤ n. Put

T = Mk ⊕ · · · ⊕Mn, then Gen(M) = Gen(T ). Let k ≤ ℓ ≤ n. Suppose there is
N ∈ Gen(M) with Ext1(Mℓ, N) ̸= 0. Set B =

⊕
{Mi | k ≤ i ≤ n and i ̸= ℓ}. Then

T = Mℓ ⊕ B. Since Ext1(Mℓ, N) ̸= 0, there is a nontrivial extension 0 → N →
E → Mℓ → 0. Hence E ∈ Gen(M) = Gen(T ) because Gen(M) is a torsion class.
There is a commutative diagram

T (I)

ρ

����

M
(I)
ℓ ⊕B(I)

((fi)I ,g)

��
0 // N // E

ν // Mℓ
// 0

Here fi = νρηi, where ηi : Mℓ → M
(I)
ℓ is the canonical inclusion. Then fi ∈

EndR(Mℓ) is not an isomorphism for all i ∈ I, because ν does not split. Since
EndR(Mℓ) is local, fi ∈ Rad(EndR(Mℓ)) for all i ∈ I. This implies that

∑
i∈I fi(Mℓ) ⊆

Rad(EndR(Mℓ))Mℓ. Note that Rad(EndR(Mℓ)) is nilpotent [10, Ex. 21.24], and
Mℓ =

∑
i∈I fi(Mℓ) + g

(
B(I)

)
. This implies that Mℓ = g

(
B(I)

)
∈ Gen(B) by [10,

Proposition 23.16], which is a contradiction. Therefore, Gen(M) = Gen(T ) and

Gen(M) ⊆
⋂

k≤ℓ≤n

Mℓ = T⊥.

□
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The next example shows that last lemma cannot be true if the module M has
infinite length.

Example 3.14. Let p ∈ Z be a prime number. Consider R = Z and M =⊕
n>0 Zpn . Let Tp be the class of p-groups. Then Gen(M) = Tp which is a torsion

class. Let 0 ̸= T ∈ Tp be any p-group. It follows that E(T ) ∼= Z(X)
p∞ for some set X.

Then,

Z(X)
p∞

Z(X)
p

∼=
(
Zp∞

Zp

)(X)

∼= Z(X)
p∞ ∼= E(T ).

Therefore, there is a monomorphism α : T → Z(X)
p∞

Z(X)
p

. Consider the following diagram:

0 // Z(X)
p

1

��

// A

��

// T

α
��

// 0

0 // Z(X)
p

i // Z(X)
p∞

π // Z
(X)
p∞

Z(X)
p

// 0

where the lower row is the canonical sequence and A is the pull-back of α and π.
By [13, Lemma 7.29], the upper row is exact. Since i is an essential monomorphism,

the upper row is not a trivial extension. This implies that Ext1(T,Z(X)
p ) ̸= 0. Thus,

Gen(T ) ⊈ T⊥.

Theorem 3.15. Consider the following conditions for a torsion class T in R-Mod.

(1) T is a classic tilting torsion class.
(2) T is closed under direct products, it contains any injective module and

T = Gen(P ) for a finitely generated module P .
(3) T = Gen(P ) for a finitely generated, faithful and finendo module P .

Then, (1)⇒(2)⇒(3). In addition, if R is left Artinian, then the three conditions
are equivalent.

Proof. (1)⇒(2) Suppose T = Gen(P ) = P⊥ is a classical torsion class. Since
T = P⊥, T is closed under direct products (Proposition 1.1) and contains any
injective module. By hypothesis, P is finitely generated.

(2)⇒(3) By hypothesis, PX ∈ Gen(P ) = T for every set X. This implies that P
is finendo (Lemma 1.14). Since E(R) ∈ T = Gen(P ), there exists an epimorphism
P (X) → E(R) → 0 for some set X. Since R is projective, the inclusion R ↪→ E(R)
lifts to a monomorphism R→ P (X). Then, P is faithful.
Now suppose R is left Artinian and assume (3). Then P is of finite length. By
Lemma 3.13, there is a direct summand T of P such that T = Gen(P ) = Gen(T ) ⊆
T⊥. Since P is faithful and there exists an epimorphism T (X) → P for some set X,
T is also faithful. Now, for any set X, PX ∈ Gen(P ) because P is finendo. This
implies that TX ∈ Gen(P ) = Gen(T ). Thus, T is finendo. By Proposition 3.4, T
is a classical tilting torsion class, proving (1). □

Remark 3.16. Note that either (1), (2) or (3) of Theorem 3.15 does not imply that
P is of finite length. For, just consider a P = R for some non left Artinian ring R.

Definition 3.17. A bimodule ACB is faithfully balanced if the natural homomor-
phism A→ EndB(C) and B → EndA(C) are isomorphisms.
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For a nonclassical torsion class T = Gen(T ) there is not a generalization of the
Brenner-Butler Theorem, that is, there is not an equivalence of categories between
T and Cogen(HomR( , T )) = Ker(TorS1 ( , T )). This is because T is not finitely
generated. What can be done is to choose T as a classical partial tilting faith-
fully balanced module over its endomorphism ring such that T is equivalent to
HomR(T, T ).

Lemma 3.18. Let T be an R-module with endomorphism ring S = EndR(T ).
Consider the following conditions:

(1) T satisfies:
(T10) There is an exact sequence 0 → R→ T ′ → T ′′ → 0 such that T ′, T ′′ ∈

add(T ).
(T20) Ext1(T, T ) = 0.

(2) T is faithfully balanced as S − R-bimodule and ST is a classical partial
tilting module.

(3) RT is faithful and there is t̄ = (t1, ..., tn) ∈ Tn such that S ⟨t1, ..., tn⟩ = ST
and Tn/Rt̄ ∈ add(T ).

(4) RT satisfies (T10).

Then (1)⇒(2)⇔(3)⇒(4). Moreover, if (3) is true, then every module M ∈ Gen(T )
is T -reflexive, i.e., HomR(T,M)⊗S T ∼=M canonically.

Proof. (1)⇒(2) Applying the functor HomR( , T ) to the sequence (T10), we get a
sequence in S-Mod:

(3.1) 0 → HomR(T
′′, T ) → HomR(T

′, R) → HomR(R, T ) → Ext1R(T
′′, T ) = 0

where Ext1R(T
′′, T ) = 0 because (T20). Now, we have that T ′ ≤⊕ Tm for some m >

0. Then HomR(T
′, T ) ≤⊕ HomR(T

m, T ) ∼= Sm. Therefore, HomR(T
′, T ),HomR(T

′′, T ) ∈
add(S), that is, HomR(T

′, T ),HomR(T
′′, T ) are finitely generated projective S-

modules. Since S HomR(R, T ) ∼= ST , ST satisfies (T3) and (T4). Now, we apply
HomS( , T ) to (3.1) and we get the diagram:

0 //R //

ωR

��

T ′ //

ωT ′

��

T ′′ //

ωT ′′

��

0

0 //HomS(HomR(R, T ), T ) //HomS(HomR(T
′, T ), T ) //HomS(HomR(T

′′, T ), T ) //Ext1S(T, T )

Note that HomS(HomR(R, T ), T ) ∼= EndS(T ) and ωT ′ and ωT ′′ are isomorphisms
because T ′, T ′′ ∈ add(T ). Thus, ωR is an isomorphism. This implies that T is
faithfully balanced. Also, we have that Ext1S(T, T ) = 0.

(2)⇒(3) Since ST satisfies (T3) and (T4), there is an exact sequence in S-Mod

0 // K // Sn ϕ // T // 0

with K ∈ add(S). Let {ei} be the canonical basis of Sn. Then, ST = S ⟨t1, ..., tn⟩
where ti = ϕ(ei) for 1 ≤ i ≤ n. Applying the functor HomS( , T ) to the sequence,
we get

0 //HomS(T, T )
ϕ∗
//

∼=
��

HomS(S
n, T ) //

∼=
��

HomS(K,T ) //

��

Ext1S(T, T ) = 0

0 //R
ϕ∗

//Tn //Tn/Rt̄ //0
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where t̄ = ϕ∗(1) = (t1, ..., tn). The first isomorphism is by hypothesis and the
second is the canonical isomorphism. Hence Tn/Rt̄ ∼= HomS(K,T ) ∈ add(T ).

(3)⇒(2) Since RT is faithful and ST = S ⟨t1, ..., tn⟩, Rt̄ = R. Hence, there is an

exact sequence 0 // R
i // Tn // T0 // 0 , with T0 ∼= Tn/Rt̄. Applying

the functor HomR( , T ) to the sequence, we get a sequence in S-Mod:

0 // HomR(T0, T ) // HomR(T
n, T )

i∗ // HomR(R, T ) ∼=S T.

Given t ∈ T , there exist f1, ..., fn ∈ S such that t =
∑n

i=1 fi(ti). Then i
∗(
∑n

i=1 fi)(1) =
t. Thus, i∗ is surjective. Also, T0 ∈ add(S). Therefore, ST satisfies (T3) and (T4).
Now, we apply HomS( , T ) and we get a commutative diagram in R-Mod,

0 //R //

ωR

��

Tn //

∼= ωTn

��

T0 //

∼= ωT0

��

0

0 //EndS(T ) //HomS(S
n, T ) //HomS(HomR(T0, T ), T ) //Ext1(T, T ),

where ωTn and ωT0
are isomorphisms. Thus, ωR is an isomoprhism. Hence, T is

faithfully balanced and Ext1S(T, T ) = 0. At the beginning we show (3)⇒(4).
For the last assertion, assume (3) and let M ∈ Gen(T ) and ρM : HomR(T,M)⊗S

T → M be the canonical homomorphim given by ρM (ϕ ⊗ t) = ϕ(t). Since M is
T -generated, each element m ∈ M can be writing as a finite sum m =

∑
fi(ti)

with fi : T → M . Aśı ρM (
∑
fi ⊗ ti) = m, that is, ρM is surjective. Now, let us

prove that ρM is injective. Given any element
∑
ϕ⊗ t ∈ HomR(T,M)⊗S T , then

ϕ⊗ t = ϕ⊗
∑

ϕi(ti) =
∑

ϕϕi ⊗ ti =
∑

ψi ⊗ ti.

Hence, if u ∈ Ker ρM , then we can write u =
∑n

i=1 ϕi ⊗ ti, ϕ = (ϕ1, ..., ϕn) ∈
HomR(T

n,M) with ϕ(t̄) = 0. Consider the following diagram:

Tn ϕ //

π

��

M

Tn/Rt̄
i

⊕ //

ϕ̄

;;

Tm,

ϕ̂

OO

where π is the canonical projection. Since ϕ(t̄) = 0, then ϕ factors through Tn/Rt̄.
Since Tn/Rt̄ ∈ add(T ), there exists m > 0 such that Tn/Rt̄ ≤⊕ Tm and so there

exists a homomorphism ϕ̂ : Tm → M such that ϕ̂i = ϕ̄. Therefore, ϕ = ϕ̄π =

ϕ̂iπ = ϕ̂(sji) where (sji) a matrix of m × n with sji ∈ S. Let ηi : T → Tn be the
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canonical inclusion. Hence

u =

n∑
i=1

ϕi ⊗ ti

=

n∑
i=1

 m∑
j=1

ηiϕ̂sji

⊗ ti

=

m∑
j=1

ηj ϕ̂⊗

(
n∑

i=1

sjiti

)

=

m∑
j=1

ηj ϕ̂⊗ (iπ(t̄))j

= 0

Thus, ρM is injective. □

The following examples show that the implications (3)⇒(1) and (4)⇒(3) are
not true in general.

Example 3.19. Let K be a field.

(i) Consider the ring R =
(

K 0
K(N) K

)
and the idempotents ϵa = ( 1 0

0 0 ) and ϵb =

( 0 0
0 1 ) . Then,

R = Rϵa ⊕Rϵb =

(
K 0
K(N) 0

)
⊕
(
0 0
0 K

)
.

Let e1 be the first element in the canonical basis of K(N). Put S =
R
(

0 0
e1 0

)
=
(

0 0
Ke1 0

)
. Then S ∼= Rϵb. Set M1 = Rϵa, M2 = Rϵa/S and

M =M1 ⊕M2. Then, there is an exact sequence:

0 →M1 ⊕Rϵb = R→M2
1 →M → 0.

This implies that M satisfies the condition (4) of Lemma 3.18 and M is
finitely presented, sinceM1 is a finitely generated projective R-module. On
the other hand,

EndR(M) =

(
EndR(M1) HomR(M2,M1)

HomR(M1,M2) EndR(M2)

)
=

(
K 0
K EndR(M2)

)
.

Since the dimension overK ofM1 is infinite,M cannot be finitely generated
over its endomorphism ring. Thus, M does not satisfy the condition (3) of
Lemma 3.18.

(ii) Let R be the ring of 3× 3 lower triangular matrices with coefficients in K.
Then R = Rϵ1 ⊕Rϵ2 ⊕Rϵ3 where

ϵ1 =

1 0 0
0 0 0
0 0 0

 ϵ2 =

0 0 0
0 1 0
0 0 0

 ϵ3 =

0 0 0
0 0 0
0 0 1

 .

Then Rad(Rϵ1) =
(

0 0 0
K 0 0
K 0 0

)
and Soc(Rϵ1) =

(
0 0 0
0 0 0
K 0 0

)
. Set U = Rϵ1/ Soc(Rϵ1),

T = Rϵ1⊕Rϵ3⊕Rϵ1/Rad(Rϵ1) andM = T⊕U . Then T is a tilting module,
dimK(U) <∞ and U ∈ Gen(T ). It follows from [6, Proposition 8] that M
satisfies the condition (3) of Lemma 3.18. There is a canonical, non trivial,
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extension 0 → Rϵ3 → Rϵ1 → U → 0, because Soc(Rϵ1) ∼= Rϵ3. This im-
plies that there is a non trivial extension of T by U . Thus, Ext1(U, T ) ̸= 0
and so Ext1(M,M) ̸= 0. That is, M does not satisfy the condition (1) of
Lemma 3.18.

Proposition 3.20. If T is a tilting module, then there exists a cardinal κ such that
the tilting module T (κ) satisfies (T10).

Proof. By (T1), there exists an exact sequence 0 → R → T ′ → T ′′ → 0 such that
T ′, T ′′ ∈ Add(T ). Then, there are two cardinals κ1 and κ2 such that T ′ ≤⊕ T (κ1)

and T ′′ ≤⊕ T (κ2). Take κ = max{κ1, κ2}. Thus, T ′, T ′′ ∈ add(T (κ)). □

Corollary 3.21. Let T be a tilting torsion class in R-Mod. Then T is generated
by a tilting module T such that:

(1) if S = EndR(T ) then T is a faithfully balanced (S−R)-bimodule and ST is
a classical partial tilting module.

(2) T coincides with the class of T -reflexive R-modules, i.e.,

HomR(T, T )

−⊗ST
++ T

HomR(T,−)
nn

is an equivalence.
(3) HomR(T, T ) is a torsionfree class in S-Mod if and only if RT is classical

tilting.

Proof. Since Gen(T ) = Gen(T (κ)) for any cardinal κ, by Proposition 3.20, we can
assume that T = Gen(T ) for a tilting module T satisfying (T10) and (T20).

(1) If follows from the condition (2) of Lemma 3.18.
(2) By the condition (3) of Lemma 3.18, every M ∈ Gen(T ) is T -reflexive. On

the other hand, any T reflexive module is T -generated.
(3) ⇒ If HomR(T, T ) is a torsionfree class in S-Mod, then HomR(T, T ) =

Cogen(S). The equivalence

Cogen(S)

−⊗ST
++ T

HomR(T,−)

mm

implies that RT is finitely generated by [15, Theorem 1].
⇐ Since RT is finitely generated and we have the equivalence

HomR(T, T )

−⊗ST
++ T

HomR(T,−)
nn

by [12, Theorem 3.1], HomR(T, T ) = Cogen(S). Thus, HomR(T, T ) is a torsionfree
class. □

4. Exercises

(1) Prove Corollary 1.7.
(2) [13, Ex. 7.26(ii)].
(3) LetM be a module. Prove thatM⊥ is closed under extensions and contains

all injective modules.
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(4) Let M be a module. Prove that Gen(M) is closed under epimorphisms and
direct sums.

(5) Prove Remark 1.20 and give an example of a no finitely generated small
module.

(6) A module T is classical tilting if and only if T satisfies (T10), (T20), (T3)
and (T4).

(7) A module T is classical partial tilting if and only if T satisfies (T20), (T3)
and (T4). [9, III.6]

(8) Prove Remark 2.5.
(9) Prove that every simple module over a left hereditary left Noetherian left

V-ring is a classical partial tilting module.
(10) Let R be a ring and M be a left R-module. The singular submodule of M

is defined as Z(M) = {m ∈ M | ann(m) ≤ess R}. It is said that a module
is singular if Z(M) =M . Show that,
(a) Z(M/N) =M/N for all N ≤ess M .
(b) if R is a semiprime Noetherian ring Z(M) is equal to the torsion ofM ,

that is Z(M) = t(M) = {m ∈M | cm = 0 for some regular element c ∈
R}. [8, Ch. 7]

(11) Let R be a hereditary Noetherian V-ring. Using [2, Theorem 4] prove that
every torsion R-module is semisimple.

(12) In Example 2.7
(a) Prove that T = S ⊕ E(R) is a tilting module.
(b) Find a reference for the sentence “E(R) is a flat non projective R-

module”.
(c) Prove that E(R)/R cannot be finitely generated.

(13) Let E be an injective module and φ : M → E be a monomorphism. Show
that if α : M → N is an essential monomorphism, then there exists a
monomorphism α : N → E such that αα = φ.

(14) In Example 2.11, prove that:
(a) R is finite dimensional over R.
(b) Describe the lattice of left ideals of the ring R. [10, Proposition 1.7]
(c) Prove that R is a hereditary ring. (Hint: Prove that all the minimal

ideals of R are isomorphic)
(d) the left ideals I =

(
R 0
C 0

)
and J = ( 0 0

C C ) are two-sided ideals and are
the only two maximal ideals of R. Conclude that there are only two
isomorphism classes of simple R-modules

(e) R is Artinian (use [10, Theorem 1.22])
(f) there is an isomorphism:

R/J ∼= P/
(
R C
C C
)

and hence R/J is injective.
(g) I = Gen(P ). (Hint: prove that P generates the injective hull of each

simple)
(15) Let r be a preradical, i.e., a subfunctor of the identity functor. Show that

if r is a radical, that is, r (M/r(M)) = 0 for all module M , then the class
Tr = {M | r(M) =M} is closed under extensions.

(16) in Example 3.10.
(a) Describe the lattice of left ideals of the ring R. [10, Proposition 1.7]
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(b) Prove that R is an Artinian hereditary ring. (Hint: Prove that all the
minimal ideals of R are isomorphic)

(17) [10, Ex. 21.24].
(18) In Example 3.14, prove the equality Gen(M) = Tp.
(19) Prove that the homomorphisms ωT ′ and ωT ′′ in the proof (1)⇒(2) of

Lemma 3.18, are isomorphisms.
(20) Prove that the module HomR(M1,M2) = K and HomR(M2,M1) = 0 in

Example 3.19(i).
(21) Prove that the module T in Example 3.19(ii) is a tilting module.
(22) In the proof (3)⇒, prove that HomR(T, T ) = Cogen(S).
(23) In the proof (3)⇐, prove that Cogen(S) is a torsionfree class.
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